

Structural Calculations

For

Dann Residence 3008 70th Avenue SE, Mercer Island, WA 98040

March 13, 2024

Prepared by

Brian Lampe Mariam Soliman

STRUCTURAL CALCULATIONS SHEET INDEX Project Name Project Address

ltem	Page #
Criteria	
Design Criteria	C1.1
Gravity	
Roof Framing	
✓ Key Plans	R1.1
✓ Beams	R2.1
Upper Floor Framing	
✓ Key Plans	U1.1
✓ Beams	U2.1
 Main Floor Framing 	
✓ Key Plans	MF1.1
✓ Beams	MF2.1
Lateral	
Forces	
✓ Criteria	L1.1
 Building Geom 	etry L1.2
 Seismic Paran 	leters L1.3
 Wind Lateral L 	oadsL1.4
 Vertical Distrib 	ution of Lateral ForcesL1.5
 Shear Walls/Diaphragn 	IS
 Roof Diaphrag 	m Forces/ Upper Floor Diaphragm Forces L2.1
✓ Shear Wall Fo	ces L2.2
✓ Shear Wall An	alysis L2.3
Shear Wall/Diaphragm	Capacities
✓ Allowable Diap	hragm Stresses
✓ Allowable She	ar Wall Stresses
✓ Shear Wall An	chor Bolts
✓ Shear Wall Sc	1eduleL3.4
Miscellaneous	

•	Stud Wall Design	M1.1
•	Post Design	M1.3
•	Footing Design	M2.1

Criteria

Project:	Dann Residence	
Project Number:	3008 70th Avenue SE, Mercer Island, WA 98040	
Code:	IBC 2018 Risk Category II	
Earthouake:	Site Class D	
	l _e = 1.00	R = 6.5
	$S_0 = 1405$	$b_0 = 3.0$
	S = 0.490	- 10
	$S_1 = 0.469$	_d - 4.0
	p = 1.00	
Wind:	Basic Design Wind Speed, V 110	
	Exposure B	
	Topographic Factor $K_{ZT} = 1.60$	
Soil Bearing:	1500-pst Allowable Soil Bearing Pressure	
Concrete:	2500-psi Concrete Strength	
Naila	Higher Strength may be used, but special inspection and testil Shoothing	ng reports not req d
Nalis:	Sileating $00 \text{ common } (272 \times 0.131)$ Framing $12d \text{ box } (21/1 \times 0.131)$	
Roof Framing		
Snow Load	Ground Snow Pa	25 nsf
	Exposure factor. Ce	1.0
	Thermal Factor, Ct	1.2
	Flat Roof Snow, Pf (0.7 Ce Ct I Pg)	21 psf
	Use Snow Load	25 psf
	Attic (where accessible)	10 psf
Dead Load	Roofing - Composition Shingles	4.0 psf
	Sheathing - 7/16 OSB	2.2 psf
	Framing - Trusses @ 24"oc	2.5 pst
	Insulation - Batt.	1.0 pst
	Celling - 5/8 GVVB	2.8 psi 2.5 psf
	Total	2.5 psi 15 nsf
Deflection	1/360 Live Load 1/240 Total Load	15 þ31
Denotion	2,000 200 2000, 2,210 1000 2000	
Floor Framing:		
Live Load	Residential	40 psf
	Decks	60 psf
Dead Load	Finish Floor - Carpet/Vinyl	5.0 psf
	Sheathing - 3/4 Plywood/Edge Gold	2.5 psf
	Framing - I-Joists @ 16"oc	2.7 pst
	Celling - 5/8 GWB	2.8 pst
		2.0 psi
Deflection	1/480 Live Load 1/240 Total Load	10 031
_ 0110011011	L TOT LIVE LOUG, L'L TO TOTAL LOUG	
Wall Framing:		
Dead Load	Exterior 2x Stud Walls	10 psf
	Interior 2x Stud Walls	8 psf
		Date: 1/26/2024

Page: <u>C1.1</u>

A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

Search Information

Address:	3008 70th Ave SE, Mercer Island, WA 98040, USA
Coordinates:	47.5834996, -122.2449016
Elevation:	290 ft
Timestamp:	2024-01-26T15:18:30.091Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	П
Site Class:	D-default

Basic Parameters

Name	Value	Description
SS	1.405	MCE _R ground motion (period=0.2s)
S ₁	0.489	MCE _R ground motion (period=1.0s)
S _{MS}	1.685	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	1.124	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

* See Section 11.4.8

Additional Information

Name	Value	Description
SDC	* null	Seismic design category
Fa	1.2	Site amplification factor at 0.2s
Fv	* null	Site amplification factor at 1.0s
CR _S	0.902	Coefficient of risk (0.2s)
CR ₁	0.896	Coefficient of risk (1.0s)
PGA	0.601	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.721	Site modified peak ground acceleration
TL	6	Long-period transition period (s)
SsRT	1 405	
	1.400	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.557	Probabilistic risk-targeted ground motion (0.2s) Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsUH SsD	1.557 3.305	Probabilistic risk-targeted ground motion (0.2s) Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) Factored deterministic acceleration value (0.2s)
SsUH SsD S1RT	1.557 3.305 0.489	Probabilistic risk-targeted ground motion (0.2s) Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) Factored deterministic acceleration value (0.2s) Probabilistic risk-targeted ground motion (1.0s)
SsUH SsD S1RT S1UH	1.557 3.305 0.489 0.545	 Probabilistic risk-targeted ground motion (0.2s) Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) Factored deterministic acceleration value (0.2s) Probabilistic risk-targeted ground motion (1.0s) Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsUH SsD S1RT S1UH S1D	1.557 3.305 0.489 0.545 1.342	 Probabilistic risk-targeted ground motion (0.2s) Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) Factored deterministic acceleration value (0.2s) Probabilistic risk-targeted ground motion (1.0s) Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) Factored deterministic acceleration value (1.0s)

* See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

7KH 1DWLRQDO 0DS \$GYDQFHG 9

86*6 7KH 1DWLRQDO 0DS, 1DWLRQDO %RXQGDULHV 3URJUDP *HRJUDSKLF 1DPHV, QIRUPDWLRQ 6\VWHF 'DWDVHW 1DWLRQDO /DQG &RYHU 'DWDEDVH 1DWL 1DWLRQDO 7UDQVSRUWDWLRQ 'DWDVHW' 86*6 *ORE %XUHDX 7,*(5 /LQH GDWD' 86)6 5RDG 'DWD' 1DWX

ΝP

Roof/Upper Wall, RJ-01a 1 piece(s) 9 1/2" TJI ® 210 @ 24" OC

Sloped Length: 19' 7 13/16"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	636 @ 4 1/2"	1679 (3.50")	Passed (38%)	1.15	1.0 D + 1.0 S (Alt Spans)
Shear (lbs)	610 @ 15' 9 1/2"	1530	Passed (40%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	2291 @ 7' 11 3/16"	3450	Passed (66%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.381 @ 8' 1 9/16"	0.788	Passed (L/497)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.598 @ 8' 1 1/4"	1.051	Passed (L/317)		1.0 D + 1.0 S (Alt Spans)

Member Length : 19' 9" System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 1.5/12

Deflection criteria: LL (L/240) and TL (L/180).

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Beveled Plate - HF	5.50"	5.50"	1.75"	236	400	636	Blocking
2 - Beveled Plate - HF	5.50"	5.50"	3.50"	353	584	937	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 3" o/c	
Bottom Edge (Lu)	8' 8" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Load	Location	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 19' 6"	24"	15.0	25.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net	

Roof/Upper Wall, RJ-01b 1 piece(s) 9 1/2" TJI ® 210 @ 24" OC

Sloped Length: 19' 7 13/16"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	714 @ 4 1/2"	1679 (3.50")	Passed (42%)	1.15	1.0 D + 1.0 S (Alt Spans)
Shear (lbs)	677 @ 5 1/2"	1530	Passed (44%)	1.15	1.0 D + 1.0 S (Alt Spans)
Moment (Ft-Ibs)	2911 @ 8' 10 3/4"	3450	Passed (84%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.569 @ 8' 11 3/8"	0.866	Passed (L/365)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.909 @ 8' 11 5/16"	1.155	Passed (L/229)		1.0 D + 1.0 S (Alt Spans)

Member Length : 19' 9" System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 1.5/12

PASSED

• Deflection criteria: LL (L/240) and TL (L/180).

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

• Upward deflection on right cantilever exceeds overhang deflection criteria.

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Support		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Beveled Plate - HF	5.50"	5.50"	1.75"	268	446	714	Blocking
2 - Beveled Plate - HF	3.50"	3.50"	3.50"	322	532	854	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 8" o/c	
Bottom Edge (Lu)	8' 8" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Load	Location	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 19' 6"	24"	15.0	25.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net	

Roof/Upper Wall, RJ-01c 1 piece(s) 9 1/2" TJI ® 210 @ 24" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	
Member Reaction (lbs)	1206 @ 12' 6 1/2"	2486 (3.50")	Passed (49%)	1.15	1.0 D + 1.0 S (All Spans)	
Shear (lbs)	606 @ 12' 4 3/4"	1530	Passed (40%)	1.15	1.0 D + 1.0 S (All Spans)	1
Moment (Ft-Ibs)	-1942 @ 12' 6 1/2"	2588	Passed (75%)	1.15	1.0 D + 1.0 S (All Spans)	1
Live Load Defl. (in)	0.365 @ 19' 6"	0.701	Passed (2L/462)		1.0 D + 1.0 S (Alt Spans)	1
Total Load Defl. (in)	0.511 @ 19' 6"	0.935	Passed (2L/330)		1.0 D + 1.0 S (Alt Spans)]

• Deflection criteria: LL (L/240) and TL (L/180).

Overhang deflection criteria: LL (2L/240) and TL (2L/180).

• Right cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

• Moment capacity over cantilever support 2 has been reduced by 25% to lessen the effects of buckling.

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length		Loads	to Support			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Beveled Plate - HF	5.50"	5.50"	1.75"	135	273	408	Blocking
2 - Beveled Plate - HF	3.50"	3.50"	3.50"	454	752	1206	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	6' 11" o/c					
Bottom Edge (Lu)	4' 7" o/c					
-TIL isiste are only analyzed using Maximum Allowable brasing solutions						

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Load	Location	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 19' 6"	24"	15.0	25.0	Roof

Member Notes

(converted from: Floor Joist)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net	

3/13/2024 12:11:59 AM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Dann Residence R2.3

Member Length : 19' 9" System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 1.5/12

Roof/Upper Wall, RB-01 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	205 @ 0	3413 (1.50")	Passed (6%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	94 @ 10 1/2"	6400	Passed (1%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	166 @ 1' 7 1/2"	10868	Passed (2%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.000 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.001 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length : 3' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 3' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Support:		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	85	120	205	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	85	120	205	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 3" o/c	
Bottom Edge (Lu)	3' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	7.7		
1 - Uniform (PSF)	0 to 3' 3"	2' 11 1/2"	15.0	25.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator Job No	otes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam soliman@btleng.net	

Roof/Upper Wall, RB-02 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

Overall Length: 13' 4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3102 @ 3' 7 1/2"	10725 (3.00")	Passed (29%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1493 @ 4' 6"	10057	Passed (15%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	2548 @ 9'	17078	Passed (15%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-Ibs)	-2793 @ 3' 7 1/2"	13164	Passed (21%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.038 @ 0	0.242	Passed (2L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.061 @ 8' 7 11/16"	0.471	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)

Member Length : 13' 4" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 1".

• Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 5' 6 5/16".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length			Loads	to Support:		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	1242	1860	3102	None
2 - Trimmer - HF	5.00"	5.00"	1.50"	503	849	1352	None

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	13' 4" o/c					
Bottom Edge (Lu)	13' 4" o/c					

Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 13' 4"	N/A	12.0		
1 - Uniform (PSF)	0 to 13' 4"	7' 6"	15.0	25.0	Roof
2 - Point (lb)	0	N/A	85	120	Linked from: RB- 01, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes
Mariam Soliman
BTL Engineering PS
(425) 814-8448
mariam.soliman@btleng.net

Weyerhaeuser

3/13/2024 12:11:59 AM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Dann Residence R2.5

1 piece(s) 5 1/2" x 7 1/2" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1519 @ 1 1/2"	10725 (3.00")	Passed (14%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1232 @ 10 1/2"	8381	Passed (15%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	3331 @ 4' 7 9/16"	11859	Passed (28%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.083 @ 4' 6 15/16"	0.297	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.137 @ 4' 6 15/16"	0.446	Passed (L/784)		1.0 D + 1.0 S (All Spans)

Member Length : 9' 2" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 11".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Support		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	592	927	1519	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	526	849	1375	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 2" o/c	
Bottom Edge (Lu)	9' 2" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 9' 2"	N/A	10.0		
1 - Uniform (PLF)	0 to 6' 4 1/2"	N/A	118.0	200.0	Linked from: RJ- 01a, Support 1
2 - Uniform (PLF)	6' 4 1/2" to 9' 2"	N/A	67.5	136.5	Linked from: RJ- 01c, Support 1
3 - Point (Ib)	6' 4 1/2"	N/A	85	120	Linked from: RB- 01, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net

Job Notes

3/13/2024 12:11:59 AM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Dann Residence R2.6

Roof/Upper Wall, RB-01b

1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	917 @ 0	3413 (1.50")	Passed (27%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	489 @ 10 1/2"	6400	Passed (8%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	860 @ 1' 10 1/2"	10868	Passed (8%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.003 @ 1' 10 1/2"	0.125	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.006 @ 1' 10 1/2"	0.188	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length : 3' 9" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 3' 9".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Support		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	353	564	917	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	353	564	917	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 9" o/c	
Bottom Edge (Lu)	3' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 9"	N/A	7.7		
1 - Uniform (PSF)	0 to 3' 9"	12' 1/2"	15.0	25.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net	

1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2354 @ 5' 3 3/4"	16088 (4.50")	Passed (15%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1210 @ 6' 3"	10057	Passed (12%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	0 @ N/A	N/A	Passed (N/A)		N/A
Neg Moment (Ft-Ibs)	-3585 @ 5' 3 3/4"	13164	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.053 @ 8' 6"	0.213	Passed (2L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.086 @ 8' 6"	0.319	Passed (2L/888)		1.0 D + 1.0 S (Alt Spans)

Member Length : 8' 6" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Right cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 6".

· -427 lbs uplift at support located at 0". Strapping or other restraint may be required.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	-116	-311	0/-427	None
2 - Trimmer - HF	4.50"	4.50"	1.50"	948	1405	2353	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 6" o/c	
Bottom Edge (Lu)	8' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 6"	N/A	12.0		
1 - Uniform (PSF)	0 to 8' 6"	2' 11 1/2"	15.0	25.0	Roof
2 - Point (lb)	8' 6"	N/A	353	564	Linked from: RB- 01b, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Mariam Soliman **BTL Engineering PS** (425) 814-8448 mariam.soliman@btleng.net

Job Notes

Roof/Upper Wall, RB-01c

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	645 @ 0	3413 (1.50")	Passed (19%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	363 @ 10 1/2"	6400	Passed (6%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	645 @ 2'	10868	Passed (6%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.003 @ 2'	0.133	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.005 @ 2'	0.200	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length : 4' System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 4'.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Support		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	252	394	646	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	252	394	646	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' o/c	
Bottom Edge (Lu)	4' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 4'	N/A	7.7		
1 - Uniform (PSF)	0 to 4'	7' 10 1/2"	15.0	25.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net	

Roof/Upper Wall, RB-02c

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1420 @ 2' 8 1/4"	16088 (4.50")	Passed (9%)		1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	874 @ 1' 9"	10057	Passed (9%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	0 @ N/A	N/A	Passed (N/A)		N/A
Neg Moment (Ft-Ibs)	-2207 @ 2' 8 1/4"	13164	Passed (17%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.028 @ 0	0.200	Passed (2L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.046 @ 0	0.269	Passed (2L/999+)		1.0 D + 1.0 S (Alt Spans)

Member Length : 9' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/360) and TL (L/240).

Overhang deflection criteria: LL (0.2") and TL (2L/240).

• Left cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

• Right cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 9' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	4.50"	4.50"	1.50"	513	907	1420	None
2 - Trimmer - HF	4.50"	4.50"	1.50"	513	907	1420	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 3" o/c	
Bottom Edge (Lu)	9' 3" o/c	
	•	•

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 9' 3"	N/A	12.0		
1 - Uniform (PSF)	0 to 9' 3"	2' 11 1/2"	15.0	25.0	Roof
2 - Point (lb)	9' 3"	N/A	252	394	Linked from: RB- 01c, Support 2
3 - Point (lb)	0	N/A	252	394	Linked from: RB- 01c, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net	

Roof/Upper Wall, RB-03

1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1746 @ 0	5363 (1.50")	Passed (33%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1594 @ 1' 1 1/2"	13409	Passed (12%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	5704 @ 3' 10"	30360	Passed (19%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.022 @ 3' 11 1/4"	0.264	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.038 @ 3' 11 1/4"	0.396	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length : 7' 11" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 7' 11".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Support		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	729	1017	1746	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	699	973	1672	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 11" o/c	
Bottom Edge (Lu)	7' 11" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 7' 11"	N/A	16.0		
1 - Uniform (PSF)	0 to 7' 11"	2' 11 1/2"	15.0	25.0	Roof
2 - Point (Ib)	3' 10"	N/A	949	1404	Linked from: RB- 04, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes
Mariam Soliman
BTL Engineering PS
(425) 814-8448
mariam.soliman@btleng.net

3/13/2024 12:11:59 AM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Dann Residence R2.11

Roof/Upper Wall, RB-04 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2294 @ 12' 11 3/4"	7796 (3.50")	Passed (29%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1838 @ 1' 5 1/2"	13409	Passed (14%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	7067 @ 6' 7 7/8"	30360	Passed (23%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.085 @ 6' 7 7/8"	0.632	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.143 @ 6' 7 7/8"	0.843	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length : 13' 1 3/4" System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

PASSED

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 12' 7 3/4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads	to Support			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Beam - GLB	5.50"	5.50"	1.50"	949	1404	2353	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	925	1369	2294	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	13' 2" o/c				
Bottom Edge (Lu) 13' 2" o/c					
Maximum allowable bracing intervals based on applied load					

Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 13' 1 3/4"	N/A	16.0		
1 - Uniform (PSF)	0 to 13' 1 3/4" (Front)	8' 5 1/4"	15.0	25.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Mariam Soliman	
BTL Engineering PS	
(425) 814-8448	
mariam soliman@htleng.net	

Roof/Upper Wall, RB-05 1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1201 @ 0	2126 (1.50")	Passed (56%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	876 @ 9"	5333	Passed (16%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	1664 @ 2' 9 1/4"	7547	Passed (22%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.025 @ 2' 9 1/4"	0.277	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.042 @ 2' 9 1/4"	0.369	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length : 5' 6 1/2" System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 5' 6 1/2".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

Bearing Length		Loads to Supports (lbs)				
Total	Available	Required	Dead	Snow	Total	Accessories
1.50"	1.50"	1.50"	464	737	1201	Blocking
1.50"	1.50"	1.50"	464	737	1201	Blocking
	B Total 1.50" 1.50"	Bearing Leng Total Available 1.50" 1.50" 1.50" 1.50"	Bearing Length Total Available Required 1.50" 1.50" 1.50" 1.50" 1.50" 1.50"	Bearing Length Loads Total Available Required Dead 1.50" 1.50" 1.50" 464 1.50" 1.50" 1.50" 464	Bearing Length Loads to Supports Total Available Required Dead Snow 1.50" 1.50" 1.60" 464 737 1.50" 1.50" 1.50" 464 737	Bearing Length Loads to Supports (Ibs) Total Available Required Dead Snow Total 1.50" 1.50" 1.50" 464 737 1201 1.50" 1.50" 1.50" 464 737 1201

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	5' 7" o/c				
Bottom Edge (Lu) 5' 7" o/c					
Maximum allowable bracing intervals based on applied load					

app

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 6 1/2"	N/A	6.4		
1 - Uniform (PLF)	0 to 5' 6 1/2" (Front)	N/A	161.0	266.0	Linked from: RJ- 01b, Support 2

Member Notes

(converted from: Roof Flush Beam)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

ForteWEB Software Operator	Job Notes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net	

Upper Floor/ Main Wall, UJ-01 1 piece(s) 3 1/2" x 9 1/2" 2.2E Parallam® PSL @ 16" OC

Member Length : 19' 6 1/2" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	958 @ 19' 6 1/2"	3281 (1.50")	Passed (29%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	879 @ 18' 9"	6428	Passed (14%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	4592 @ 9' 11 1/2"	13579	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.406 @ 9' 11 1/2"	0.639	Passed (L/566)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.508 @ 9' 11 1/2"	0.958	Passed (L/453)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	51	40	Passed		

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 4% increase in the moment capacity has been added to account for repetitive member usage.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: 5/8" Gypsum ceiling.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Beam - GLB	5.50"	5.50"	1.50"	199	797	996	Blocking
2 - Hanger on 9 1/2" HF beam	5.50"	Hanger ¹	1.50"	201	803	1004	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	19' 7" o/c				
Bottom Edge (Lu)	19' 7" o/c				
•Maximum allowable bracing intervals based on applied load.					

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
2 - Face Mount Hanger	LUS410	2.00"	N/A	8-10dx1.5	6-10d				

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 20'	16"	15.0	60.0	Deck

Member Notes

(converted from: Roof Joist)

ForteWEB Software Operator Job Notes
Mariam Soliman
BTL Engineering PS
(425) 814-8448
mariam.soliman@btleng.net

3/13/2024 12:12:28 AM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Dann Residence

Upper Floor/ Main Wall, UJ-02 1 piece(s) 11 7/8" TJI ® 210 @ 16" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	684 @ 5 1/2"	1005 (1.75")	Passed (68%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	684 @ 5 1/2"	1655	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	3194 @ 9' 9 1/2"	3795	Passed (84%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.418 @ 9' 9 1/2"	0.622	Passed (L/536)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.575 @ 9' 9 1/2"	0.933	Passed (L/390)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	40	40	Passed		

Member Length : 19' 1/2" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: 5/8" Gypsum ceiling.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 11 7/8" GLB beam	5.50"	Hanger ¹	1.75" / - 2	196	522	718	See note 1
2 - Stud wall - HF	5.50"	5.50"	1.75"	194	518	712	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' o/c	
Bottom Edge (Lu)	19' 1" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Face Mount Hanger	IUS2.06/11.88	2.00"	N/A	10-10dx1.5	2-Strong-Grip				

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 19' 6"	16"	15.0	40.0	Upper floor

Member Notes

(converted from: Roof Joist)

ForteWEB Software Operator Job Notes
Mariam Soliman
BTL Engineering PS
(425) 814-8448
mariam.soliman@btleng.net

3/13/2024 12:12:28 AM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Dann Residence

Upper Floor/ Main Wall, UB-01 1 piece(s) 4 x 8 DF No.2

_ _...

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	915 @ 0	3281 (1.50")	Passed (28%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	747 @ 8 3/4"	3502	Passed (21%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-Ibs)	1812 @ 3' 11 1/2"	3438	Passed (53%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.038 @ 3' 11 1/2"	0.264	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.115 @ 3' 11 1/2"	0.313	Passed (L/827)		1.0 D + 0.75 L + 0.75 S (All Spans)

Member Length : 7' 11" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (5/16").

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	617	106	293	1016	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	617	106	293	1016	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 11" o/c	
Bottom Edge (Lu)	7' 11" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 7' 11"	N/A	6.4			
1 - Uniform (PSF)	0 to 7' 11"	8"	15.0	40.0	-	Upper Floor
2 - Uniform (PLF)	0 to 7' 11"	N/A	95.0	-	-	Wall
3 - Uniform (PSF)	0 to 7' 11"	2' 11 1/2"	15.0	-	25.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Mariam Soliman	
(425) 814-8448	
mariam.soliman@btleng.net	

Upper Floor/ Main Wall, UB-01-Deck 1 piece(s) 4 x 8 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	223 @ 0	3281 (1.50")	Passed (7%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	182 @ 8 3/4"	3045	Passed (6%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	442 @ 3' 11 1/2"	2989	Passed (15%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.020 @ 3' 11 1/2"	0.264	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.028 @ 3' 11 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 7' 11" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (5/16").

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	65	158	223	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	65	158	223	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 11" o/c	
Bottom Edge (Lu)	7' 11" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 7' 11"	N/A	6.4		
1 - Uniform (PSF)	0 to 7' 11"	8"	15.0	60.0	Deck

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net	

Upper Floor/ Main Wall, UB-02-Deck 1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8037 @ 12' 4 1/2"	17875 (5.00")	Passed (45%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4243 @ 11' 3 1/2"	10203	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	13316 @ 6' 1 1/4"	20213	Passed (66%)	1.00	1.0 D + 1.0 L (Alt Spans)
Neg Moment (Ft-Ibs)	-5951 @ 12' 4 1/2"	15580	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.310 @ 6' 3"	0.408	Passed (L/474)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.373 @ 6' 2 7/16"	0.613	Passed (L/394)		1.0 D + 1.0 L (Alt Spans)

Member Length : 16' 1" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

Upward deflection on right cantilever exceeds overhang deflection criteria.

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 11' 11 1/2".

• Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 5' 1/8".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Load	ls to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	892	3656/-376	4548/-376	None
2 - Trimmer - HF	5.00"	5.00"	2.25"	1751	6287	8038	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	16' 1" o/c	
Bottom Edge (Lu)	16' 1" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 16' 1"	N/A	14.0		
1 - Uniform (PSF)	0 to 16' 1"	9' 9"	15.0	60.0	Deck
2 - Point (Ib)	16' 1"	N/A	65	158	Linked from: UB- 01-Deck, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Mariam Soliman
 BTL Engineering PS

 (425) 814-8448
 mariam.soliman@btleng.net

3/13/2024 12:12:28 AM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Dann Residence

Upper Floor/ Main Wall, UB-02 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]	Member Length : 5' 11 1/2'
Member Reaction (lbs)	17249 @ 4"	18047 (5.50")	Passed (96%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]	System : Wall Member Type : Header
Shear (lbs)	16312 @ 1' 5 3/8"	19285	Passed (85%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]	Building Use : Residential Building Code : IBC 2018
Moment (Ft-Ibs)	19432 @ 1' 6"	47766	Passed (41%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]	Design Methodology : ASD
Live Load Defl. (in)	0.030 @ 2' 10 9/16"	0.183	Passed (L/999+)		1.0 D + 1.0 L (All Spans) [1]	
Total Load Defl. (in)	0.051 @ 2' 10 3/16"	0.275	Passed (L/999+)		1.0 D + 1.0 L (All Spans) [1]	

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Total	Accessories
1 - Trimmer - DF	5.50"	5.50"	5.26"	4729	6150	1859	12407/- 12407	25145/- 12407	None
2 - Trimmer - HF	3.00"	3.00"	1.82"	1634	2940	500	3340/- 3340	8414/-3340	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' o/c	
Bottom Edge (Lu)	6' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 5' 11 1/2"	N/A	19.5				
1 - Uniform (PSF)	0 to 5' 11 1/2"	10' 5 5/8"	15.0	60.0	-	-	Upper Floor
2 - Point (Ib)	1' 6"	N/A	5312	5348	2359	15747/-15747	Linked from: UB- 04, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net	

Upper Floor/ Main Wall, UB-03 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1612 @ 5 1/2"	4922 (1.50")	Passed (33%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1028 @ 1' 5 3/8"	13861	Passed (7%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2200 @ 3' 2 1/4"	34332	Passed (6%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.005 @ 3' 2 1/4"	0.136	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.011 @ 3' 2 1/4"	0.273	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length : 5' 9 1/2" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Hanger on 11 7/8" GLB beam	5.50"	Hanger ¹	1.50"	997	223	877	2097	See note 1
2 - Beam - GLB	5.50"	5.50"	1.50"	967	214	842	2023	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	5' 10" o/c					
Bottom Edge (Lu)	5' 10" o/c					
Maximum allowable bracing intervals based on applied load.						

app

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	U610	2.00"	N/A	14-10d	6-10d	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	5 1/2" to 6' 3"	N/A	19.5			
1 - Uniform (PSF)	0 to 6' 3" (Front)	1' 9"	15.0	40.0	-	Upper Floor
2 - Uniform (PLF)	0 to 6' 3" (Front)	N/A	105.0	-	-	Wall
3 - Uniform (PSF)	0 to 6' 3" (Front)	11'	15.0	-	25.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

ForteWEB Software Operator	Job Notes	
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net		

Upper Floor/ Main Wall, UB-03a

1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	593 @ 6' 10 1/4"	4725 (1.50")	Passed (13%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	385 @ 5' 10 3/8"	8590	Passed (4%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	902 @ 3' 7 1/8"	15953	Passed (6%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.003 @ 3' 7 1/8"	0.163	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.013 @ 3' 7 1/8"	0.326	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

Member Length : 6' 10 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Supp			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Stud wall - HF	5.50"	5.50"	1.50"	514	96	90	700	Blocking
2 - Hanger on 11 7/8" GLB beam	5.25"	Hanger ¹	1.50"	523	99	92	714	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	6' 10" o/c					
Bottom Edge (Lu)	6' 10" o/c					
Maximum allowable bracing intervals based on applied load.						

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	LUS410	2.00"	N/A	8-10dx1.5	6-10d	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 10 1/4"	N/A	13.0			
1 - Uniform (PSF)	0 to 7' 3 1/2" (Front)	8"	15.0	40.0	-	Upper Floor
2 - Uniform (PLF)	0 to 7' 3 1/2" (Front)	N/A	105.0	-	-	Wall
3 - Uniform (PSF)	0 to 7' 3 1/2" (Front)	1'	15.0	-	25.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net		

3/13/2024 12:12:28 AM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Dann Residence

U2.7

Upper Floor/ Main Wall, UB-03b

1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	210 @ 8' 9 1/2"	4725 (1.50")	Passed (4%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	161 @ 7' 9 5/8"	8590	Passed (2%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	444 @ 4' 6 3/4"	15953	Passed (3%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.005 @ 4' 6 3/4"	0.211	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.009 @ 4' 6 3/4"	0.423	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 8' 9 1/2" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	5.50"	5.50"	1.50"	105	122	227	Blocking
2 - Hanger on 11 7/8" LSL beam	3.50"	Hanger ¹	1.50"	100	121	221	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	8' 10" o/c						
Bottom Edge (Lu)	8' 10" o/c						
•Maximum allowable bracing intervals based on applied load.							

app

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	LUS410	2.00"	N/A	8-10dx1.5	6-10d	

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 8' 9 1/2"	N/A	13.0		
1 - Uniform (PSF)	0 to 9' 1" (Front)	8"	15.0	40.0	Upper Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Mariam Soliman **BTL Engineering PS** (425) 814-8448 mariam.soliman@btleng.net

3/13/2024 12:12:28 AM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Dann Residence

Upper Floor/ Main Wall, UB-04 1 piece(s) 5 1/2" x 19 1/2" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	19360 @ 4' 2 3/4"	18906 (5.50")	Passed (102%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (Ibs)	15084 @ 6' 1"	30316	Passed (50%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Pos Moment (Ft-Ibs)	68702 @ 9' 6"	108572	Passed (63%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (Alt Spans)
Neg Moment (Ft-Ibs)	-52506 @ 9' 6"	81557	Passed (64%)	1.60	0.6 D - 0.7 E (All Spans)
Live Load Defl. (in)	0.157 @ 12' 4 1/2"	0.405	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.263 @ 12' 7 5/8"	0.809	Passed (L/737)		1.0 D + 1.0 L (Alt Spans)

Member Length : 20' 5" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 0.97 that was calculated using length L = 15' 9 1/4".

• Critical negative moment adjusted by a volume/size factor of 0.95 that was calculated using length L = 20' 5".

An excessive uplift of -7835 lbs detected at support located at 4' 2 3/4".

• An excessive uplift of -2625 lbs detected at support located at 20' 5".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

	Bearing Length				Loads to				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Total	Accessories
1 - Beam - DF	5.50"	5.50"	5.63"	5312	5348	2359	15747/- 15747	28766/- 15747	Blocking
2 - Hanger on 19 1/2" GLB beam	5.50"	Hanger ¹	3.85"	4495	5400	2116	7603/- 7603	19614/- 7603	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	20' 5" o/c					
Bottom Edge (Lu)	20' 5" o/c					
Maximum allowable bracing intervals based on applied load.						

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
2 - Face Mount Hanger	HGUS5.50/14	4.00"	N/A	66-16d	22-16d				

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

 ForteWEB Software Operator
 Job Notes

 Mariam Soliman
 BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 20' 5"	N/A	26.1				
1 - Uniform (PSF)	0 to 4' 5 1/2" (Front)	1' 1 1/4"	15.0	60.0	-	-	Deck
2 - Uniform (PSF)	4' 5 1/2" to 20' 10 1/2" (Front)	9' 9"	15.0	60.0	-	-	Deck
3 - Uniform (PLF)	0 to 20' 10 1/2" (Front)	N/A	105.0	-	-	-	Wall
4 - Uniform (PSF)	0 to 20' 10 1/2" (Front)	2'	15.0	-	25.0	-	Roof
5 - Point (lb)	16' 2 1/2" (Front)	N/A	2985	538	2438	-	Linked from: UB- 05, Support 2
6 - Point (Ib)	5 1/2" (Front)	N/A	997	223	877	-	Linked from: UB- 03, Support 1
7 - Point (lb)	9' 6" (Top)	N/A	-	-	-	23350	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net

Job Notes

Upper Floor/ Main Wall, UB-05 1 piece(s) 5 1/2" x 19 1/2" 24F-V4 DF Glulam

PASSED

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5152 @ 19' 7"	5363 (1.50")	Passed (96%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	4145 @ 17' 11 1/2"	21790	Passed (19%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	21419 @ 11' 3 1/4"	76495	Passed (28%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.092 @ 10' 6 1/4"	0.642	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.223 @ 10' 4 1/16"	0.962	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length : 19' 7" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 0.95 that was calculated using length L = 19' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	B	earing Leng	th		Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Stud wall - HF	5.50"	5.50"	1.50"	2068	531	932	3531	Blocking
2 - Hanger on 19 1/2" HF beam	5.50"	Hanger ¹	1.50"	2985	538	2438	5961	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	19' 7" o/c	
Bottom Edge (Lu)	19' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
2 - Face Mount Hanger	HGUS5.50/14	4.00"	N/A	66-10d	22-10d		

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 19' 7"	N/A	26.1			
1 - Uniform (PSF)	0 to 20' 1/2" (Front)	1' 4"	15.0	40.0	-	Upper Floor
2 - Uniform (PLF)	0 to 20' 1/2" (Front)	N/A	105.0	-	-	Wall
3 - Uniform (PLF)	8' 6" to 20' 1/2" (Front)	N/A	176.5	-	292.0	Linked from: RJ- 01a, Support 2

ForteWEB Software Operator	Job Notes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net	

Upper Floor/ Main Wall, UB-06 1 piece(s) 5 1/2" x 19 1/2" 24F-V4 DF Glulam

Overall Length: 26' 8 1/2"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	19961 @ 26' 3"	24063 (7.00")	Passed (83%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]
Shear (lbs)	15679 @ 24' 6"	18948	Passed (83%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Pos Moment (Ft-Ibs)	64965 @ 13' 8 15/16"	64569	Passed (101%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Neg Moment (Ft-Ibs)	-1923 @ 23' 11 1/4"	85979	Passed (2%)	1.60	0.6 D - 0.7 E (All Spans) [1]
Live Load Defl. (in)	0.764 @ 13' 7 5/8"	0.864	Passed (L/407)		1.0 D + 1.0 L (All Spans) [1]
Total Load Defl. (in)	1.323 @ 13' 6 3/8"	1.296	Passed (L/235)		1.0 D + 1.0 L (All Spans) [1]

Member Length : 26' 8 1/2" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 0.93 that was calculated using length L = 25' 11".

• Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 3' 6".

• -671 lbs uplift at support located at 26' 3". Strapping or other restraint may be required.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Total	Accessories
1 - Beam - DF	5.50"	5.50"	3.06"	4505	5422	2120	678/-678	12725/-678	Blocking
2 - Stud wall - DF	7.00"	7.00"	5.81"	6960	9905	2582	6925/- 6925	26372/- 6925	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6" o/c	
Bottom Edge (Lu)	26' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 26' 8 1/2"	N/A	26.1				
1 - Uniform (PSF)	0 to 26' 8 1/2" (Front)	9' 3 1/2"	15.0	40.0	-	-	Upper Floor
2 - Uniform (PLF)	0 to 13' 9 1/2" (Front)	N/A	95.0	-	-	-	Wall
3 - Uniform (PSF)	0 to 13' 9 1/2" (Front)	7' 6"	12.0	-	25.0	-	Roof
4 - Point (Ib)	23' 11 1/4" (Front)	N/A	4495	5400	2116	7603/-7603	Linked from: UB- 04, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net	

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1204 @ 5 1/2"	4922 (1.50")	Passed (24%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	962 @ 1' 5 3/8"	13861	Passed (7%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	2966 @ 5' 4 5/8"	34332	Passed (9%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.011 @ 5' 4 5/8"	0.246	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.037 @ 5' 4 5/8"	0.493	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

Member Length : 9' 10 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Hanger on 11 7/8" HF beam	5.50"	Hanger ¹	1.50"	900	144	398	1442	See note 1
2 - Hanger on 11 7/8" HF beam	5.50"	Hanger ¹	1.50"	900	144	398	1442	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	9' 10" o/c				
Bottom Edge (Lu)	9' 10" o/c				
Mandanian allaniahla kanadan basadan analiadan					

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	U610	2.00"	N/A	14-10dx1.5	6-10d	
2 - Face Mount Hanger	U610	2.00"	N/A	14-10dx1.5	6-10d	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	5 1/2" to 10' 3 3/4"	N/A	19.5			
1 - Uniform (PSF)	0 to 10' 9 1/4" (Front)	8"	15.0	40.0	-	Upper Floor
2 - Uniform (PLF)	0 to 10' 9 1/4" (Front)	N/A	95.0	-	-	Wall
3 - Uniform (PSF)	0 to 10' 9 1/4" (Front)	2' 11 1/2"	15.0	-	25.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net	

3/13/2024 12:12:28 AM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Dann Residence

U2.13

Upper Floor/ Main Wall, UB-08

1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3005 @ 5 1/4"	4922 (1.50")	Passed (61%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2843 @ 10' 10 7/8"	12053	Passed (24%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	9099 @ 6' 5 15/16"	29854	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.091 @ 6' 2 1/8"	0.290	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.153 @ 6' 3 7/16"	0.579	Passed (L/910)		1.0 D + 1.0 L (All Spans)

Member Length : 11' 9" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Hanger on 11 7/8" SPF beam	5.25"	Hanger ¹	1.50"	1104	2109	98	3311	See note 1
2 - Stud wall - SPF	3.50"	3.50"	1.68"	2169	1506	597	4272	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments		
Top Edge (Lu)	11' 9" o/c			
Bottom Edge (Lu)	11' 9" o/c			
Maximum allowable bracing intervals based on applied load.				

Connector: Simpson Strong-Tie

······································							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	HHUS5.50/10	3.00"	N/A	30-10d	10-10d		

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	5 1/4" to 12' 2 1/4"	N/A	19.5			
1 - Uniform (PSF)	0 to 9' 8 3/4" (Front)	8' 8"	15.0	40.0	-	Upper Floor
2 - Uniform (PLF)	9' 8 3/4" to 12' 2 1/4" (Front)	N/A	95.0	-	-	Wall
3 - Uniform (PSF)	9' 8 3/4" to 12' 2 1/4" (Front)	3' 4"	15.0	-	25.0	Roof
4 - Point (lb)	9' 8 3/4" (Front)	N/A	900	144	398	Linked from: UB- 07, Support 1
5 - Point (lb)	12' 2 1/4" (Front)	N/A	523	99	92	Linked from: UB- 03a, Support 2

ForteWEB Software Operator	Job Notes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net	

3/13/2024 12:12:28 AM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Dann Residence

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2767 @ 3 1/2"	4922 (1.50")	Passed (56%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2675 @ 1' 3 3/8"	12053	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	16696 @ 7' 1 1/4"	29854	Passed (56%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.319 @ 8' 7 1/8"	0.436	Passed (L/656)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.502 @ 8' 7 1/4"	0.872	Passed (L/417)		1.0 D + 1.0 L (All Spans)

Member Length : 17' 9 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Supp			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Hanger on 11 7/8" LSL beam	3.50"	Hanger ¹	1.50"	1023	1766	60	2849	See note 1
2 - Stud wall - SPF	5.50"	5.50"	1.50"	789	1307	38	2134	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	17' 9" o/c						
Bottom Edge (Lu) 17' 9" o/c							
Maximum allowable bracing intervals based on applied load.							

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HU612	2.50"	N/A	22-10d	8-10d	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	3 1/2" to 18' 3/4"	N/A	19.5			
1 - Uniform (PSF)	0 to 18' 3/4" (Front)	1' 4"	15.0	40.0	-	Upper Floor
2 - Point (Ib)	7' 1 1/4" (Front)	N/A	1104	2109	98	Linked from: UB- 08, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Mariam Soliman
 BTL Engineering PS

 (425) 814-8448
 mariam.soliman@btleng.net

3/13/2024 12:12:28 AM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Dann Residence

Upper Floor/ Main Wall, UB-10 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL

Overall Length: 11' 8 1/2"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4717 @ 2"	4961 (3.50")	Passed (95%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	4059 @ 1' 3 3/8"	9878	Passed (41%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-Ibs)	13006 @ 4' 6 5/16"	18346	Passed (71%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.209 @ 5' 6 13/16"	0.280	Passed (L/642)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.427 @ 5' 7 3/16"	0.560	Passed (L/315)		1.0 D + 0.75 L + 0.75 S (All Spans)

Member Length : 11' 8 1/2" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Stud wall - HF	3.50"	3.50"	3.33"	2397	1516	1577	5490	Blocking
2 - Stud wall - HF	5.50"	5.50"	2.74"	2051	839	1598	4488	Blocking
- Blocking Danola are accurated to carry no los	de applied di	rectly phone i	hom and the	full load is a	plied to the men	har haing de	aigned	

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 9" o/c	
Bottom Edge (Lu)	11' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 11' 8 1/2"	N/A	13.0			
1 - Uniform (PSF)	0 to 11' 8 1/2" (Front)	1'	15.0	40.0	-	Upper Floor
2 - Uniform (PLF)	0 to 11' 8 1/2" (Front)	N/A	95.0	-	-	Wall
3 - Uniform (PLF)	0 to 11' 8 1/2" (Front)	N/A	161.0	-	266.0	Linked from: RJ- 01b, Support 2
4 - Point (Ib)	3' 6 3/4" (Front)	N/A	1023	1766	60	Linked from: UB- 09, Support 1
5 - Point (Ib)	6' 3 3/4" (Front)	N/A	100	121	-	Linked from: UB- 03b, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net	

3/13/2024 12:12:28 AM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Dann Residence

Main Floor/Lower Wall, MJ-01

1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL @ 16" OC

Member Length : 23' 3/4" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018

Design Methodology : ASD

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	wed Result		Load: Combination (Pattern)
Member Reaction (lbs)	615 @ 4 1/2"	7796 (5.50")	Passed (8%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	538 @ 1' 5 3/8"	9878	Passed (5%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	3319 @ 11' 6 3/8"	19080	Passed (17%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.225 @ 11' 6 3/8"	0.744	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.360 @ 11' 6 3/8"	1.116	Passed (L/744)		1.0 D + 1.0 S (All Spans)
TJ-Pro [™] Rating	46	40	Passed		

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 4% increase in the moment capacity has been added to account for repetitive member usage.

· A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: 5/8" Gypsum ceiling.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - HF	5.50"	5.50"	1.50"	231	384	615	Blocking
2 - Stud wall - HF	5.50"	5.50" 5.50"		231	384	615	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	23' 1" o/c	
Bottom Edge (Lu)	23' 1" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 23' 3/4"	16"	15.0	25.0	Roof

Member Notes

(converted from: Roof Joist)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Mariam Soliman
 BTL Engineering PS

 (425) 814-8448
 mariam.soliman@btleng.net

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	531 @ 4"	18047 (5.50")	Passed (3%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	450 @ 1' 5 3/8"	12053	Passed (4%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2338 @ 9' 5 1/2"	29854	Passed (8%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.043 @ 9' 5 1/2"	0.456	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.091 @ 9' 5 1/2"	0.913	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 18' 11" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Pocket - concrete	5.50"	5.50"	1.50"	279	252	531	None
2 - Pocket - concrete	5.50"	5.50"	1.50"	279	252	531	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	18' 11" o/c	
Bottom Edge (Lu)	18' 11" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 18' 11"	N/A	19.5		
1 - Uniform (PSF)	0 to 18' 11" (Front)	8"	15.0	40.0	Main Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net	

Main Floor/Lower Wall, MB-03a

1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4175 @ 2"	4961 (3.50")	Passed (84%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3248 @ 1' 3 3/8"	8590	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	11360 @ 5' 9 1/4"	15953	Passed (71%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.271 @ 5' 9 1/4"	0.280	Passed (L/496)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.380 @ 5' 9 1/4"	0.560	Passed (L/354)		1.0 D + 1.0 L (All Spans)

Member Length : 11' 8 1/2" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	3.50"	3.50"	2.95"	1193	2982	4175	Blocking
2 - Stud wall - HF	5.50"	5.50"	3.03"	1228	3068	4296	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 9" o/c	
Bottom Edge (Lu)	11' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 11' 8 1/2"	N/A	13.0		
1 - Uniform (PSF)	0 to 11' 8 1/2" (Front)	12' 11"	15.0	40.0	Main Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net	

3/13/2024 12:12:49 AM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Dann Residence

Main Floor/Lower Wall, MB-03b

1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	230 @ 4"	7796 (5.50")	Passed (3%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	158 @ 1' 5 3/8"	8590	Passed (2%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	457 @ 4' 7 1/2"	15953	Passed (3%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.005 @ 4' 7 1/2"	0.215	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.010 @ 4' 7 1/2"	0.429	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

Member Length : 9' 1" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	5.50"	5.50"	1.50"	106	123	229	Blocking
2 - Beam - LSL	3.50"	3.50"	1.50"	103	119	222	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 1" o/c	
Bottom Edge (Lu)	9' 1" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 9' 1"	N/A	13.0		
1 - Uniform (PSF)	0 to 9' 1" (Front)	8"	15.0	40.0	Upper Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Mariam Soliman BTL Engineering PS (425) 814-8448 mariam.soliman@btleng.net	

3/13/2024 12:12:49 AM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Dann Residence

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2404 @ 0	3413 (1.50")	Passed (70%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1749 @ 9"	4638	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	3306 @ 2' 9"	6563	Passed (50%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.057 @ 2' 9"	0.183	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.081 @ 2' 9"	0.275	Passed (L/812)		1.0 D + 1.0 L (All Spans)

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Member Length : 5' 6" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 5' 6".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Trimmer - SPF	1.50"	1.50"	1.50"	722	1682	2404	None
2 - Trimmer - SPF	1.50"	1.50"	1.50"	722	1682	2404	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 6" o/c	
Bottom Edge (Lu)	5' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 5' 6"	N/A	6.4		
1 - Uniform (PSF)	0 to 5' 6"	9' 9"	15.0	60.0	Upper Floor-Deck
2 - Uniform (PLF)	0 to 5' 6"	N/A	100.0	-	Wall
3 - Uniform (PSF)	0 to 5' 6"	8"	15.0	40.0	Main Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Mariam Soliman BTL Engineering PS (425) 814-8448
mariam.soliman@btleng.net

Job Notes

Lateral Forces

Dann Residence		Revision Date:	1/29/2024
3008 70th Avenue SE, Mercer	⁻ Island, WA 98040		
Criteria			
Code:	2018 IBC	•	
	Allowable Stress Design (ASI	D) 🔻	
Seismic Design:	ASCE 7-16: 12.8 Equiv	valent Lateral Fo	orce Procedure
Wind Design:	ASCE 7-16: Ch. 28 En	velope Procedu	re, Low Rise
Risk Category:	II - Other Structures	•	Table 1.5-1
Snow Importance Factor	/ _s = 1.00	Table 1.5-2	
Ice Importance Factor - Thickness	$I_i = 1.00$	Table 1.5-2	
Ice Importance Factor - Wind	$I_{w} = 1.00$	Table 1.5-2	
Seismic Importance Factor	$I_{e} = 1.00$	Table 1.5-2	
Spectral Response, Short Period	S _s = <mark>1.405</mark>	(Mapped)	
Spectral Response, 1-s Period	S ₁ = <mark>0.489</mark>	(Mapped)	
Site Class assumed, no Geotechnical Report	•		
Site Class:	D	•	Table 20.3-1
Site Coefficient	<i>F</i> _a = 1.20	Table 11.4-1	
Site Coefficient	$F_{v} = 1.81$	Table 11.4-2	
Structural Systems:			
Light framed walls with shear panels	;		
All other structural systems	\checkmark $T_L = 6$	(Figs. 22-14 thru	ı 22-17)
Response Modification Coefficient	R = <mark>6.5</mark>	Table 12.2-1	
Overstrength Factor	$\Omega_0 = 3$	Table 12.2-1	
Deflection Amplification Factor	$C_d = 4$	Table 12.2-1	
Basic Wind Speed:	110 mph	•	
Exposure to Wind:	Exposure B	•	Section 26.7.3
Topographical Factor	K _{ZT} = <mark>1.60</mark>		

Date: 1/29/2024

19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120

Dann Residence

3008 70th Avenue SE, Mercer Island, WA 98040

Revision Date:

1/29/2024

Roof Geometry Mean Roof Height Roof Depth Overhang Length Pitch	Hn = D-Roof =	31.36 ft 2.95 ft 24 in 2:12
Floor 2 Geometry Width Length Plate Height Floor Depth	W3 = L3 = H3 = D3 =	46.8 ft 39.92 ft 9.5 ft 13 in
Floor 1 Geometry Width Length Plate Height Floor Depth	W2 = L2 = H2 = D2 =	46.67 ft 39.92 ft 10 ft 11 in
Basement Geometry Width Length Plate Height	W1 = L1 = H1 =	46.67 ft 39.9 ft 8 ft

Seismic Weight	- Roof			
Roof Area 1	1675 SF	15 psf		25,125
Roof Area 2				
Roof Area 3				
Exterior Wall 1	196.08 LF	4.75 ft	10 psf	9,314
Exterior Wall 2				
Exterior Wall 3				
Interior Wall	112 LF	4.75 ft	8 psf	4,256
			Total	38,695
Seismic Weight	- Floor 2			
Roof Area 1				
Floor Area 1	1109.5 SF	15 psf		16,643
Floor Area 2				
Floor Area 3				
Exterior Wall 1	196.08 LF	4.75 ft	10 psf	9,314
Exterior Wall 2	183 LF	5 ft	10 psf	9,150
Exterior Wall 3				
Interior Wall1	112 LF	4.75 ft	8 psf	4,256
Interior Wall2	32.17 LF	5 ft	8 psf	1,287
			Total	40,649
Seismic Weight	- Floor 1			
Roof Area 1				
Floor Area 1	1377.3 SF	15 psf		20,659
Floor Area 2				
Floor Area 3				
Exterior Wall 1	183 LF	5 ft	10 psf	9,150
Exterior Wall 2	173.14 LF	4.2 ft	10 psf	7,272
Exterior Wall 3				
Interior Wall1	32.17 LF	5 ft	8 psf	1,287
Interior Wall2	78.5 LF	4.2 ft	8 psf	2,638
			Total	41,005

N/S Projected Area - Roof	•
Sloped Roof Area	93 SF
Gable/Parapet Area	
Wall Area	222.3 SF
E/W Projected Area - Roo	T
Gable/Parapet Area	60 SE
Wall Area	189 62 SE
Wall Area	105.02 01
N/S Projected Area - Floo	r 2
Sloped Roof Area	
Gable/Parapet Area	
Wall Area	506.59 SF
E/W Projected Area - Floc	or 2
Sloped Root Area	
	432 67 SE
Wall Alea	432.07 31
N/S Projected Area - Floo	r 1
Sloped Roof Area	
Gable/Parapet Area	
Wall Area	471.17 SF
E/W Projected Area - Floc	or 1
Sloped Roof Area	
	402.04.55
waii Alea	402.94 SF

Date: 1/29/2024

Page: <u>L1.2</u>

Dann Residence		Revision Date	e: 1/29/202	4
3008 70th Avenue SE, Merce	e <mark>r Island</mark> , WA 98	040		
Redundancy, <i>p</i> 1.0	 (Section 12.3.4) 			
Design Base Shear				
$S_{MS} = F_a S_S$	(Eq. 11.4-1)	S _{<i>M</i>1}	$= F_v S_1 (Eq. 1)$	1.4-2)
= 1.686			= 0.886	
$S_{DS} = \frac{2}{3} S_{MS}$	(Eq. 11.4-3)	S _{D1}	$= \frac{2}{3} S_{M1}$ (Eq. 1)	1.4-4)
= 1.124			= 0.590	
Seismic Design Category:	Structure Period	and Weight:		
Short Period D				
1-Second Period D		$C_t = 0.020$	Table 12.8-2	
		x = 0.75		
Buildir	ıg Height (Mean Roo	of), <i>h</i> _n = 31 ft		
Approximate	e Fundamental Perio	od, $T_a = C_t (h_n)$	[×] (Eq. 12.8-7)	
	7	$T = T_a = 0.27$		
		$T_{L} = 6$	(Figs. 22-14 th	ru 22-17)
Calculated design base shear:				
$V = C_s W$	(Eq. 12.8-1)		
S_{DS}				
$C_s = \overline{\left(\frac{R}{I_e}\right)}$	(Eq. 12.8-2)		
$C_{s} = 0.173$				
The total design base shear need	not exceed:			
(Eq. 12.8-3)	(Eq. 12.8-4)		
for $T \leq T_L$ $C_s = \frac{S_{D1}}{T\left(\frac{R}{I_e}\right)}$	fo	or $T > T_L C_s$	$= \frac{S_{D1}T_L}{T^2\left(\frac{R}{I_e}\right)}$	
$C_{s} = 0.343$	T < T	C _s	= 7.758	
$C_{s} = 0.343$	$I \leq IL$			
$C_s = 0.514$	1.5 times Cs in ad	cordance with 1	1.4.8	
The total design base shear shall i	tot be less than:			
$C_{s} = 0.044S_{D}$	$_{\rm S}I_{\rm e} \ge 0.01$ (I	Eq. 12.8-5)		
$C_{s} = 0.049$				
nor where $S_1 \ge 0.6g$:				
$C_s = 0.5S_1/(R_s)$	(I	Eq. 12.8-6)		
$C_{s} = 0.000$				
$C_{2} = 0.173$				
V = 0.173 W	,			
				Date: <u>1/29/2024</u>

Page: <u>L1.3</u>

Dann Residence

3008 70th Avenue SE, Mercer Island, WA 98040

Revision Date:

1/29/2024

$ρ_s = λ K_{zT} ρ$	D _{S30}	(28.5-1)			Exposure =		В		
λ =	1.01	(Fig. 28.5	5.1)		Mean Roof Ht	hn (ft) =	31 ft		
К =	1 60	(Section 2	26 8)		a(roof) =		4 0 ft		
N 21	1.00	(000000	20.07			floor) -	4.0 ft		
					a (upper/main	100r) –	4.U II		
					Basic Wind Sp	eed =	110 mph		
					Roof Angle =		10		
North/South	n Loading							28.	5.4 Minimum Design Loads
	Zone	Area	<i>p</i> ₅₃₀ (psf)	p _{s30 design} (psf)	ρ (psf)	Force (#)	ASD Force (#)	Force (#)	ASD Force (#)
Roof	A _{wall}	38	21.6	21.6	34.9	1324	794	607	364
	B	24	21.0 _9.0	21.0	34.9 0.0	0	0	188	113
	Cwall	184	-3.0	14.4	23.3	4291	2574	2950	1770
	Caable	0	14.4	14.4	23.3	0	0	0	0
	D	69	-5.2	0.0	0.0	0	0	556	333
	Total Area =	315			Total Load =	5614	3369	4301	2580
					Design:	5614	3369		
	Zone	Area	p 530 (psf)	p san design (psf)	ρ (psf)	Force (#)	ASD Force (#)	Force (#)	ASD Force (#)
Floor 2	Awall	87	21.6	21.6	34.9	3020	1812	1384	831
	Agable	0	21.6	21.6	34.9	0	0	0	0
	В	0	-9.0	0.0	0.0	0	0	0	0
	Cwall	420	14.4	14.4	23.3	9776	5865	6721	4033
	Cgable	0	14.4	14.4	23.3	0	0	0	0
	D	0	-5.2	0.0	0.0	0	0	0	0
	Total Area =	507			Total Load =	12795	7677	8106	4863
					Design :	12795	7677		
East/West L	oading							28.	5.4 Minimum Design Loads
Df	Zone	Area	p ₅₃₀ (psf)	p _{s30 design} (psf)	ρ (psf)	Force (#)	ASD Force (#)	Force (#)	ASD Force (#)
Root	Awaii	38	21.0	21.0	34.9	1324	794	607	304
	Agable	0	∠1.0 _9.0	21.0	04.9 00	411	247	100	0
	Cwall	152	-3.0	14.4	23.3	3530	2118	2427	1456
	Caable	48	14.4	14.4	23.3	1122	673	772	463
	D	0	-5.2	0.0	0.0	0	0	0	0
	Total Area =	250			Total Load =	6387	3832	3994	2396
					Design :	6387	3832		
	Zone	Area	p (psf)	p san design (psf)	ρ (psf)	Force (#)	ASD Force (#)	Force (#)	ASD Force (#)
Floor 2	Awall	82	21.6	21.6	34.9	2868	1721	1315	789
	Agable	0	21.6	21.6	34.9	0	0	0	0
	В	0	-9.0	0.0	0.0	0	0	0	0
	Cwall	351	14.4	14.4	23.3	8156	4894	5608	3365
	Cgable	0	14.4	14.4	23.3	0	0	0	0
	D	0	-5.2	0.0	0.0	0	0	0	0
	Total Area =	433			Total Load =	11025	6615	6923	4154
					Design :	11025	6615		
	Zone	Area	<i>p</i> ₅₃₀ (psf)	p _{s30 design} (psf)	ρ (psf)	Force (#)	ASD Force (#)	Force (#)	ASD Force (#)
Floor 1	Awall	81	21.6	21.6	34.9	2839	1703	1301	781
	Agable	U	21.0	21.0	34.9	U	U	U	U
	Cwall	322	-9.0	14.4	0.0	7484	1490	51/6	3087
	Caable	0	14.4	14.4	23.3	0	4450	0	0
	D	0	-5.2	0.0	0.0	0 0	0	õ	ů 0
	Total Area =	403			Total Load =	10323	6194	6447	3868
	i otar / i ota	100			Design :	10323	6194	0111	0000
					Doolgii .	10313	0134		

Dann Residence Revision Date: 1/29/2024 3008 70th Avenue SE, Mercer Island, WA 98040 Vertical Distribution of Lateral Forces Base Shear: V = 20.81 kips Shear Walls: $C_{vx} = \frac{w_x h_x^k}{\sum_{i=1}^n w_i h_i^k}$ (Eq. 12.8-12) $F_x = C_{vx} V$ (Eq. 12.8-11) **Diaphragms:** $F_{px} = \left(\sum_{i=1}^{n} F_i / \sum_{i=1}^{n} w_i\right) (w_{px}) \dots [Eq. 12.10 - 1]$ $F_{px} = 0.2S_{DS}I_e w_{px} \dots [Eq. 12.10 - 2]$ (min) $F_{px} = 0.4S_{DS}I_e w_{px} \dots [Eq. 12.10 - 3] \text{ (max)}$ Strength Design Seismic Forces (E) Lateral Portion of Diaphragm Story Shear, Height, Weight at *i*, Story Force, Story Force, Weight, w_x Floor Level h_x w_xh_x F_{x} ΣF_x $\sum W_i$ Moment Fpx (Kips) (Kips) (Kips) (from base) (ft) (Kips) (ft-Kips) (ft-Kips) (Kips) Roof 22.1 39 38.69 854 8.98 8.98 99 8.98 Floor 2 40.65 451 4.74 13.72 251 79 9.14 11.1 120 Floor 1 41.01 7.09 20.81 9.22 Totals W = 120.35 Kips

1304

ft-Kips

	Strength Design Wind Forces (W)								
	Lateral		Lateral						
	Force	Story Shear	Force	Story Shear					
Floor Level	N/S, H _x	N/S, ∑Hx	E/W, H _x	E/W, ∑H _x					
(from base)	(Kips)	(Kips)	(Kips)	(Kips)					
Roof	5.61	5.61	6.39	6.39					
Floor 2	12.80	18.41	11.02	17.41					
Floor 1	-	-	10.32	27.73					

 $\sum w_{x}h_{x} =$

	Diaphragm (ASD)					
	Seismic,	Wind N/S	Wind E/W			
	[0.7E]	[0.6W]	[0.6W]			
	(kips)	(kips)	(kips)			
Roof	6.29	3.37	3.83			
Floor 2	6.40	7.68	6.61			
Floor 1	6.45	-	6.19			

	Shear Walls (ASD)					
	Seismic,	Wind N/S	Wind E/W			
	[0.7E]	[0.6W]	[0.6W]			
	(kips)	(kips)	(kips)			
Floor 2	6.29	3.37	3.83			
Floor 1	3.32	7.68	6.61			
Basement	4.96	-	6.19			

Date: 1/29/2024

Page: L1.5

BTL

ENGINEERING

Designed By: MS Date: Project Number: Client: Scale: Page: L2.3

_____ Client: ____

_Scale:_____ Page: L2.4

Project Number: ____

____ Scale:_____

_____Page:_____.5

BTL

Node Coordinates

	Label	X [ft]	Y [ft]	Z [ft]	Detach From Diaphragm
1	N1	0	0	0	
2	N2	0	10	0	
3	N3	7.67	10	0	
4	N4	7.67	0	0	
5	N5	0	19.5	0	
6	N6	7.67	19.5	0	

Node Boundary Conditions

Node L	abel X [k/i	in] Y [k/in]	Z [k/in]
1 N1	React	ion Reaction	Reaction
2 N4	React	ion Reaction	Reaction

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Rule	Area [in ²]	lyy [in⁴]	Izz [in⁴]	J [in⁴]
1	beam	HSS10X5X6	Beam	Tube	A992	Typical	9.67	40.6	120	100
2	column	HSS12X6X6	Column	Tube	A992	Typical	11.8	72.9	215	178
3	floor beam	HSS10X4X6	Beam	Tube	A992	Typical	8.97	24.3	104	66.5

Member Primary Data

	Label	I Node	J Node	Section/Shape	Туре	Design List	Material	Design Rule
1	M1	N2	N3	beam	Beam	Tube	A992	Typical
2	M2	N1	N5	column	Column	Tube	A992	Typical
3	M3	N4	N6	column	Column	Tube	A992	Typical
4	M4	N5	N6	beam	Beam	Tube	A992	Typical

Hot Rolled Steel Design Parameters

	Label	Shape	Length [ft]	Lcomp top [ft]	Channel Conn.	a [ft]	Function
1	M1	beam	7.67	Lbyy	N/A	N/A	Lateral
2	M2	column	19.5	Lbyy	N/A	N/A	Lateral
3	M3	column	19.5	Lbyy	N/A	N/A	Lateral
4	M4	beam	7.67	Lbyy	N/A	N/A	Lateral

Envelope Node Reactions

Node Label		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC	
1	N1	max	4.221	8	21.709	4	0	12	0	12	0	12	0	12
2		min	-4.706	3	-17.295	7	0	3	0	3	0	3	0	3
3	N4	max	4.705	4	21.712	3	0	12	0	12	0	12	0	12
4		min	-4.221	7	-17.292	8	0	3	0	3	0	3	0	3
5	N3	max	NC		NC		NC		LOCKED		NC		NC	
6		min	NC		NC		NC		LOCKED		NC		NC	
7	Totals:	max	8.925	8	7.016	6	0	12						
8		min	-8.925	7	3.282	7	0	3						

Envelope Node Displacements

	Node Label		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotation [rad]	LC	Z Rotation [rad]	LC
1	N1	max	0	3	0	7	0	12	0	12	0	12	1.026e-2	4
2		min	0	8	0	4	0	3	0	3	0	3	-1.026e-2	3
3	N2	max	0.978	3	0.008	7	0	12	0	12	0	12	3.766e-3	4
4		min	-0.978	4	-0.009	4	0	3	0	3	0	3	-3.773e-3	3
5	N3	max	0.977	3	0.008	8	0	12	0	12	0	12	3.769e-3	4
6		min	-0.977	4	-0.009	3	0	3	0	3	0	3	-3.761e-3	3
7	N4	max	0	7	0	8	0	12	0	12	0	12	1.025e-2	4
8		min	0	4	0	3	0	3	0	3	0	3	-1.026e-2	3
9	N5	max	1.367	3	0.01	7	0	12	0	12	0	12	1.716e-3	8
10		min	-1.367	4	-0.012	4	0	3	0	3	0	3	-1.731e-3	3
11	N6	max	1.366	3	0.01	8	0	12	0	12	0	12	1.727e-3	4
12		min	-1.366	4	-0.012	3	0	3	0	3	0	3	-1.713e-3	7

Upper Floor/ Main Wall, UB-03a-Overstrength 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5484 @ 4"	7796 (5.50")	Passed (70%)		1.0 D + 0.7 E (All Spans)
Shear (lbs)	385 @ 5' 10 3/8"	8590	Passed (4%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	902 @ 3' 7 1/8"	15953	Passed (6%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.003 @ 3' 7 1/8"	0.163	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.013 @ 3' 7 1/8"	0.326	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

Member Length : 6' 10 1/4" System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• An excessive uplift of -4662 lbs detected at support located at 4".

	Be	earing Leng	th		Loads to				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Total	Accessories
1 - Stud wall - HF	5.50"	5.50"	3.87"	514	96	90	7100/- 7100	7800/-7100	Blocking
2 - Hanger on 11 7/8" GLB beam	5.25"	Hanger ¹	1.50"	523	99	92	-	714	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments						
Top Edge (Lu)	6' 10" o/c							
Bottom Edge (Lu)								
Maximum allowable bracing intervals based on applied load.								

 Connector: Simpson Strong-Tie

 Support
 Model
 Seat Length
 Top Fasteners
 Face Fasteners
 Member Fasteners
 Accessories

 2 - Face Mount Hanger
 LUS410
 2.00"
 N/A
 8-10dx1.5
 6-10d
 Image: Control of the second se

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 6' 10 1/4"	N/A	13.0				
1 - Uniform (PSF)	0 to 7' 3 1/2" (Front)	8"	15.0	40.0	-	-	Upper Floor
2 - Uniform (PLF)	0 to 7' 3 1/2" (Front)	N/A	105.0	-	-	-	Wall
3 - Uniform (PSF)	0 to 7' 3 1/2" (Front)	1'	15.0	-	25.0	-	Roof
4 - Point (Ib)	2 1/4" (Front)	N/A	-	-	-	7100	PT Load Seismic Ω E=7100 #

 ForteWEB Software Operator
 Job Notes

 Mariam Soliman
 BTL Engineering PS

 (425) 814-8448
 mariam.soliman@btleng.net

3/12/2024 7:30:06 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Dann Residence L2.13

Upper Floor/ Main Wall, UB-03a-Connections 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL

Overall Length: 7' 3 1/2"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

					-	_
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	Ν
Member Reaction (lbs)	2502 @ 4"	7796 (5.50")	Passed (32%)		1.0 D + 0.7 E (All Spans)] s
Shear (lbs)	385 @ 5' 10 3/8"	8590	Passed (4%)	1.00	1.0 D + 1.0 L (All Spans)	
Moment (Ft-Ibs)	902 @ 3' 7 1/8"	15953	Passed (6%)	1.00	1.0 D + 1.0 L (All Spans)] B
Live Load Defl. (in)	0.003 @ 3' 7 1/8"	0.163	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)] c
Total Load Defl. (in)	0.013 @ 3' 7 1/8"	0.326	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)]

Member Length : 6' 10 1/4" system : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

0.6D-0.7E

= (0.6*514#) - (0.7*2480)

Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• An excessive uplift of -1680 lbs detected at support located at 4".

							\sim		= -1228#> resolv	ed by straps
	Bearing Length				Loads t	o Supports	(lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Total	Accessories	
1 - Stud wall - HF	5.50"	5.50"	1.76"	514	96	90	2840/- 2840	3540/-2840	Blocking	
2 - Hanger on 11 7/8" GLB beam	5.25"	Hanger ¹	1.50"	523	99	92	-	714	See note 1]

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments						
Top Edge (Lu)	6' 10" o/c							
Bottom Edge (Lu) 6' 10" o/c								
Maximum allowable bracing intervals based on applied load.								

Connector: Simpson Strong-Tie											
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories					
2 - Face Mount Hanger	LUS410	2.00"	N/A	8-10dx1.5	6-10d						

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 6' 10 1/4"	N/A	13.0				
1 - Uniform (PSF)	0 to 7' 3 1/2" (Front)	8"	15.0	40.0	-	-	Upper Floor
2 - Uniform (PLF)	0 to 7' 3 1/2" (Front)	N/A	105.0	-	-	-	Wall
3 - Uniform (PSF)	0 to 7' 3 1/2" (Front)	1'	15.0	-	25.0	-	Roof
4 - Point (Ib)	2 1/4" (Front)	N/A	-	-	-	2840	PT Load Seismic Ω E=7100 #/2.5

 ForteWEB Software Operator
 Job Notes

 Mariam Soliman
 BTL Engineering PS

 (425) 814-8448
 mariam.soliman@btleng.net

3/12/2024 7:29:58 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Dann Residence L2.14 2

Project Number:

2018 IBC/SDPWS 2015 – Diaphragms (8d Nailing)

Table 4.2C Nominal Unit Shear Capacities for Wood-Frame Diaphragms

(a)

				E	Block	ed W	ood s	Struc	tura	l Pane	el Diap	hrag	ns ^{1,2,3,4}	6						
										5	A]		B	
					Nai	l Spacin	g (in.) at	diaphra (Cas	igm bou ies 3 & 4	ndaries (a 1), and at	ill cases), all panel e	at continu dges (Cas	ious panel es 5 & 6)	edges p	araliei to	load	bour panel 4), an	lail Spacing Indaries (all I edges pari Id at all pari	(in.) at diapi cases), at co illel to load (el edges (Ca	hragm Intinuous Cases 3 (Ises 5 & 6
		Minimum		Minimum		6			4			2-1/2			2		6	4	2-1/2	2
		Fastener Penetration in	Minimum Nominal	of Nailed Face				Nail Sp:	acing (in	.) at other	r panel edg	es (Case	s 1, 2, 3, &	4)			Nail	Spacing (in (Case:) at other pa 1, 2, 3, & 4)	nel edge:
Grade	Nail Size	Framing	Panel	at Adjoining		6			6			4			3		6	6	4	3
Giade	Nan Size	Member or Blocking	Thickness (in.)	and Boundaries	(pif)	(kip	G, s/in.)	(pif)	(ki)	G, ps/in.)	v, (plf)	(kip	G, s/in.)	v, (pif)	(kip	G, s/in.)	(plf) (plf)	(plf)	v (plf)
1		{in.)		(in.)		OSB	PLY		OSB	PLY		OSB	PLY		OSB	PLY				
	Ed	1.1/4	5/16	2	370	15	12	500	8.5	7.5	750	12	10	840	20	15	520	700	1050	1175
		1-174	310	3	420	12	9.5	560	7.0	6.0	840	9.5	8.5	950	17	13	590	785	1175	1330
Structural I	8d	1-3/8	3/8	2	540	14	11	720	9.0	7.5	1060	13	10	1200	21	15	765	1010	1485	1680
				3	600	12	10	800	7.5	6.5	1200	10	9.0	1350	18	13	840	1120	1680	1890
	10d	1-1/2	15/32	2	720	24	1/	960	15	12	1280	20	15	1460	31	21	1010	1190	2015	2045
			6440	2	340	15	10	450	9.0	7.0	670	13	9.5	760	21	13	475	630	940	1065
1	64	1.1/4	5/16	3	360	12	9.0	500	7.0	6.0	760	10	0.8	860	17	12	530	700	1085	1205
1		1-04	3/8	2	370	13	9.5	500	7.0	6.0	750	10	8.0	840	18	12	520	700	1050	1175
	L		010	3	420	10	8.0	560	5.5	5.0	840	8.5	7.0	950	14	10	590	785	1175	1330
-		1	3/8	2	480	15	11	640	9.5	7.5	960	13	9.5	1090	21	13	670	895	1345	1525
Sheathing					540	12	9.5	720	7.5	6.0	1080		8.5	1220	18	12	755	1010	1510	1710
and	Bd	1-3/8	7/16	1 1	570	11	9.0	760	7.0	6.0	1140	10	9.0	1200	20	13	110	900	1410	1010
Single-Floor				2	540	13	9.5	720	7.5	6.5	1060	11	8.5	1200	19	13	755	1010	1485	1680
			15/32	3	600	10	8.5	800	6.0	5.5	1200	9.0	7.5	1350	15	11	840	1120	1680	1890
			15/32	2	580	25	15	770	15	11	1150	21	14	1310	33	18	810	1080	1610	1835
	104	1-1/2	10/32	3	660	21	14	860	12	9.5	1300	17	12	1470	28	16	910	1205	1820	2060
	1 100		19/32	2	640	21	14	850	13	9.5	1280	18	12	1460	28	17	895	1190	1790	2045
L				3	720	17	12	960	10	8.0	1440	14	11	1640	24	15	1010	1345	2015	2295
1. Nominal ASD allo constructi structural	unit shear ca wable unit si ion requirem panel diaph	pacities shall be hear capacity an ients see 4.2.6. F ragms. See App	adjusted in d LRFD fa for specific endix A fo	accordance with ctored unit resist requirements, se r common nail d	4.2.3 to ance. Fo e 4.2.7.1 imensio	determin or generation for woo ns.	al d				Cas Pan to F	es 1&3:0 el Joints l raming	Contínuous Perpendicu	lar Pa Fr	ases 2& nel Join aming	4: Conti its Parall	nuous el to	Cases 58 Panel Joi dicular ar Framing	26: Continue nts Perpen- nd Parallel t	DUBS ID
ror speci	es aud grade	is or training ou	er man Do	ugias-rir-Larch	or South	iem Pin	e,													

Panel span rating for out-of-plane los (See Section 3.2.2 and Section 3.2.3)

Por species and grades of transmig other than Douglas-tir-Lack or Southern Pine, reduced nominal unit share capacities shall be determined by multiplying the tabulated nominal unit share capacity by the Specific Gravity Adjustment Factor P (19.6–50), where G = Specific Gravity Adjustment Factor shall not be greater than 1. Apparent share sufficience values G, are based on asilis jin farming with moistare content less than or equal to 19% at time of fabrication and panel stiffness values G, or Grajphragme constructed with inder OSB or 3-190 phywood panels. When 4-by or 5-phy phywood panels or composite panels are used, G, values shall be permitted to be multiplied by 1.2.

- or 5-ply plywood panels or composite panels are used (0, values shall be permitted to be multiplied by 1.2. Where mosture content of the framing is greater than 19% at time of fabrication, Q, values shall be multiplied by 0.5. Updaphagm resistance depends on the direction of continuous panel joints with respect to the loading direction and direction of framing members, and is independent of the panel orientation.

than the span rating with the long panel dis

(a) Panel span rating for out-of-plane loads may be lower than the span rating with the long panel direction perpendicular to suppor (See Section 3.2.2 and Section 3.2.3)

Reduction Factor = 2 1.

G = 0.42 (SPF or Hem Fir)... Adjustment Factor = [1-(0.5-0.42)] = 0.92 or 0.5 (I-Joists or Douglas Fir)... Adjustment Factor = 1.0 2.

Diaphragm	Sheathing Thickness	Nail Spacing Edge/Intermediate	Blocked	Framing	Seismic Capacity (Case 1/Other)	Wind Capacity (Case 1/Other)
Roof – Unblocked	7/16"	6"/12" oc	Ν	2x (SPF/HF)	212-plf/156-plf	297-plf/219-plf
Roof – Blocked	7/16"	4"/12" oc	Y	2x (SPF/HF)	313-plf	437-plf
Floor – Unblocked	3/4"	6"/12" oc	Ν	2x (DF) or 3x (HF)	240-plf/180-plf	335-plf/252-plf
Floor – Blocked	3/4"	4"/12" oc,	Y	2x (DF) or 3x (HF)	360-plf	505-plf

2018 IBC/SDPWS 2015 - Shear Wall Schedule

7/16"OSB; 0.131" h Nails; SPF or HF Studs @ 16" oc

Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls^{1,3,6,7}

	Wood-based Panels ⁴																		
Sheathing	Minimum Nominal	Minimun Fastener Penetration	Fastener	A SEISMIC Panel Edge Fastener Spacing (in.)											B WIND Panel Edge Fastener Spacing (in.)			ner	
Material	Panel Thickness	in Framing Member or	Type & Size		6			4			3			2		6	4	3	2
	(in.)	Blocking (in.)		v₅ (plf)	G (kips	i. s/in.)	v₅ (plf)	G (kips	ia s/in.)	v₅ (plf)	G (kips	ia s/in.)	v₀ (plf)	G (kips	/in.)	v" (plf)	v _w (plf)	v _w (plf)	v _w (plf)
			Nail (common or galvanized box)		OSB	PLY		OSB	PLY		OSB	PLY		OSB	PLY				
Wood	5/16	1-1/4	6d	400	13	10	600	18	13	780	23	16	1020	35	22	560	840	1090	1430
Panels - Structural I ^{4.5}	3/8 ² 7/16 ²	1-3/8	8d	460 510	19 16	14 13	720 790	24 21	17 16	920 1010	30 27	20 19	1220 1340	43 40	24 24	645 715	1010 1105	1290 1415	1710 1875
	15/32			560	14	11	860	18	14	1100	24	17	1460	37	23	785	1205	1540	2045
	15/32	1-1/2	10d	680	22	16	1020	29	20	1330	36	22	1740	51	28	950	1430	1860	2435
Mand	5/16 3/8	1-1/4	6d	360 400	13 11	9.5 8.5	540 600	18 15	12 11	700 780	24 20	14 13	900 1020	37 32	18 17	505 560	755 840	980 1090	1260 1430
Structural Panels -	3/8 ² 7/16 ² 15/32	1-3/8	8d	440 480 520	17 15 13	12 11 10	640 700 760	25 22 19	15 14 13	820 900 980	31 28 25	17 17 15	1060 1170 1280	45 42 39	20 21 20	615 670 730	895 980 1065	1150 1260 1370	1485 1640 1790
Sheathing	15/32 19/32	1-1/2	108	620 680	22 19	14 13	920 1020	30 26	17 16	1200 1330	37 33	19 18	1540 1740	52 48	23 22	870 950	1290 1430	1680 1860	2155 2435
Plywood Siding	5/16 3/8	1-1/4 1-3/8	Nail (galvanizod casing) 6d 8d	280 320	1: 1:	3	420 480	1	6	550 620	1	7	720 820	2 2	1 2	390 450	590 670	770 870	1010 1150
Particleboard Sheathing -	3/8		Nall (common or galvanized box) 6d	240	1:	5	360	1	7	460	1	9	600	2:	2	335	505	645	840
(M-S "Exterior Glue" and M-2 "Exterior	3/8 1/2		Bd	260 280	1) 1)	8	380 420	2	0	480 540	2	1 2	630 700	23	3 4	365 390	530 590	670 755	880 980
Glue")	1/2 5/8		10d	370 400	2	1 1	550 610	2	3 3	720 790	2	4 4	920 1040	21	5	520 560	770 855	1010 1105	1290 1455
Structural Fiberboard	1/2		Nail (galvanized roofing) 11 ga. galv. roofing nail (0.120" x 1-1/2" long x 7/16" head)				340	4.	0	460	5.	0	520	5.	5		475	645	730
Sheathing	25/32		11 ga. galv. roofing nail (0.120" x 1-3/4" long x 3/8" head)				340	4.	0	460	5.	0	520	5.	6		475	645	730

1. Nominal unit shear capacities shall be adjusted in accordance with 4.3.3 to determine ASD allowable unit shear capacity and LRFD factored unit resistance. For general construction requirements see 4.3.6. For

specific requirements, see 4.3.7.1 for wood structural panel shear walls, 4.3.7.2 for particleboard shear walls, and 4.3.7.3 for fiberboard shear walls. See Appendix A for common and box nail dimensions. 2. Shears are permitted to be increased to values shown for 15/32 inch (nominal) sheathing with same nailing provided (a) studs are spaced a maximum of 16 inches on center, or (b) panels are applied with long

Shears are permitted to be increased to values shown for 15/32 inch (nominal) sheathing with same nailing provided (a) studs are spaced a maximum of 16 inches on center, or (b) panels are applied with long dimension across studs.
 For species and grades of framing other than Douglas-Fir-Larch or Southern Pine, reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the Specific Gravity Adjustment Factor = [1-(0.5-G)], where G = Specific Gravity of the framing tumber from the NDS (Table 12.3.3A). The Specific Gravity Adjustment Factor shall not be greater than 1.
 Apparent shear stiffness values G_{at} are based on nail slip in framing with moisture content less than or equal to 19% at time of fabrication and panel stiffness values for shear walls constructed with either OSB or 3-ply plywood panels. When 4-ply or 5-ply plywood panels or composite panels are used, G_a values shall be permitted to be multiplied by 1.2.
 Where moisture content of the framing is greater than 19% at time of fabrication, G_a values shall be multiplied by 0.5.
 Where moelts are applied on both faces of a shear wall and nail spacing is less than 6° on center on either side, panel joints shall be offset to fall on different framing members as shown below. Alternatively, the width of the nailed face of framing members shall be 3° nominal or greater at adjoining panel edges and nails at all panel edges shall be staggered.
 Galvanized nails shall be hot-dipped or tumbled.

Reduction Factor = 2 1.

16"oc studs – use values for 15/32 2

3. G = 0.42 (SPF or Hem Fir)... Adjustment Factor = [1-(0.5-0.42)] = 0.92

Wall Type	Blocked	Sheathing (1) or (2) Sides	Nail Spacing Edge/Intermediate	Framing	Sill Plate	Seismic Capacity h/bs = 2	Seismic Capacity h/b₅ = 3.5	Wind Capacity h/bs = 2	Wind Capacity h/bs = 3.5
P1-6	Y	1	6"/12" oc	2x	2x	240-plf	194-plf	335-plf	272-plf
P1-4	Y	1	4"/12" oc	2x	2x	350-plf	284-plf	490-plf	398-plf
P1-3	Y	1	3"/12" oc	2-2x	2x	450-plf	366-plf	630-plf	512-plf
P1-2	Y	1	2"12" oc	2-2x	2x	590-plf	478-plf	820-plf	669-plf
P2-4	Y	2	4"/12" oc, ea.side	2-2x	Зx	700-plf	568-plf	980-plf	796-plf
P2-3	Y	2	3"/12" oc, ea. side	2-2x	Зx	900-plf	733-plf	1260-plf	1024-plf
P2-2	Y	2	2"/12" oc, ea. side	2-2x	3x	1180-plf	957-plf	1640-plf	1338-plf

2018 IBC/NDS 2015 – Shear Wall Framing Clips

	Model	Type of	Fasteners	Direction	DF/S	P Allowable L	oads	SPF/I	HF Allowable L	.oads
	No.	Connection	(in.)	of Load	Floor (100)	Roof (125)	(160)	Floor (100)	Roof (125)	(160)
		[1]	(0) 0 121 v 114	F1	395	465	465	340	400	400
			(0) 0.131 x 1 72	$F_{2^{6}}$	395	430	430	340	370	370
SS	A34			F1	640	640	640	550	550	550
		1	(8) #9 x 11⁄2 SD	F ₂	495	495	495	425	425	425
				Uplift	240	240	240	170	170	170
				A ₁	295	350	350	255	300	300
		2	(9) 0.131 x 1½	E	295	360	385	255	310	330
				C1	185	185	185	160	160	160
				A ₂	295	325	325	255	280	280
SS	A35	3	(12) 0.131 x 1½	C ₂	295	330	330	255	285	285
				D	225	225	225	195	195	195
			(10) 0 101 v 11/	F ₁	590	650	650	510	560	560
		4	(12) 0.131 X 172	F2 ⁶	590	670	670	510	575	575
		5	(12) PH612I	F1	420	420	420	360	360	360
			(10) 0 101 v 11/	G	580	625	625	500	540	540
	LIF4		(12) 0.131 X 1 /2	Н	580	525	525	500	450	450
			(12) 0 121 x 11/	G	580	565	565	500	485	485
	LIFU		(12) 0.131 x 1½	Н	545	490	490	470	420	420

1. Allowable loads are for one angle. When angles are installed on each side of the joist, the minimum joist thickness is 3".

2. Some illustrations show connections that could cause cross-grain tension or bending of the wood during loading if not reinforced sufficiently. In this case, mechanical reinforcement should be considered.

3. LTP4 can be installed over 3/8" wood structural panel sheathing with 0.131" x 1 1/2" nails and achieve 0.72 of the listed load, or over 1/2" sheathing and achieve 0.64 of the listed load. 0.131" x 2 1/2" nails will achieve 100% load.

4. LTP4 satisfies the IRC continuously sheathed portal frame (CS-PF) framing anchor requirements when installed over raised wood floor framing per Figure R602.10.6.4.

5. The LTP5 may be installed over wood structural panel sheathing up to 1/2" thick using 0.131" x 1 1/2" nails with no reduction in load.

6. Connectors are required on both sides to achieve F_2 loads in both directions.

 Fasteners: Nail dimensions in the table are diameter by length. SD screws are Simpson Strong-Tie[®] Strong-Drive[®] screws. PH612I is a pan-head #6 x 1/2" screw available from Simpson Strong-Tie. For additional information, see <u>Fastener Types and</u> <u>Sizes Specified for Simpson Strong-Tie Connectors</u>.

Wall Type	Capacity	A35 Capacity	A35 Spacing	LTP4 Capacity	LTP4 Spacing
P1-6U	144-plf (E)	560#	44" oc	540#	44" oc
P1-6	240-plf (E)	560#	27" ос	540#	27" ос
P1-4	350-plf (E)	560#	18" oc	540#	18" oc
P1-3	450-plf (E)	560#	14" oc	540#	14" oc
P1-2	820-plf (W)	560#	7½" oc	540#	7½" oc
P2-4	700-plf (E)	560#	9" ос	540#	LTP5 18" oc + A35 18" oc
P2-3	900-plf (E)	560#	7" ос	540#	LTP5 14" oc + A35 14" oc
P2-2	1640-plf (W)	560#	2 rows 8" oc	540#	LTP5 8" oc + A35 8" oc

2018 IBC/NDS 2018 - Shear Wall Bolts

Table 12E BOLTS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections^{1,2,3,4}

for sawn lumber or SCL to concrete

1. Tabulated lateral design values, Z_i for bolted connections shall be multiplied by all applicable adjustment factors (see Table 11.3.1). 2. Tabulated lateral design values, Z_i are for "full-body diameter" bolts (see Appendix Table L1) with bolt bending yield strength,

Fyp, of 45,000 psi. Tabulated lateral design values 7

Tabulated lateral design values, Z, are based on dowel bearing strength, F_e, of 7,500 psi for concrete with minimum f_c'=2,500 psi.
 Six inch anchor embedment assumed.

Wall Type	Capacity	Sill Plate	Single 5/8"φ Bolt Capacity	5/8Ӣ Anchor Bolt Spacing	MASAP Anchor Capacity	MASAP Anchor Spacing
P1-6U	144-plf (E)	2x	1376#	60" oc	1060#	60" oc
P1-6	240-plf (E)	2x	1376#	60" oc	1060#	52" oc
P1-4	350-plf (E)	2x	1376#	46" oc	1060#	36" oc
P1-3	450-plf (E)	2x	1376#	36" oc	1060#	28" oc
P1-2	820-plf (W)	2x	1376#	20" ос	1250#	18" oc
P2-4	700-plf (E)	Зx	1712#	28" oc	875#	15" oc
P2-3	900-plf (E)	Зx	1712#	22" oc	875#	11" oc
P2-2	1640-plf (W)	Зx	1712#	12" oc	1005#	7" oc

	SHEAR WALL SCHEDULE (IN ACCORDANCE W/ ANSIJAF&PA SDPWS-2015 SECTION 4.3) Updated 1/20/2021												
WALL	SHEATHING	PANEL EDGE NAILING	MINIMUM WID FACE OF F ADJOINING P	TH OF NAILED RAMING @ PANEL EDGES	MUDSILL PLATE	FACE NAILING	FRAMING CLIPS	ANCHORAGE	TO CONCRETE 6	SEISMIC CAPACITY	WIND CAPACITY		
		Ø	SINGLE MEMBER	BUILT-UP MEMBER				ANCHOR BOLTS	MUDSILL ANCHORS	h/b = 2 h/b = 3.5	h/b = 2 h/b = 3.5		
P1-6	1 SIDE	6" oc	2x	2x	2x	6" oc	A35 @ 27" oc or LTP4 @ 27" oc	% "Ø @ 60" oc	MASAP @ 52" oc	240-plf 194-plf	240-plf 194-plf		
P1-4	1 SIDE	4" oc	2x	2x	2x	4" oc	A35 @ 18" oc or LTP4 @ 18" oc	% "Ø @ 46" oc	MASAP @ 36" oc	350-plf 284-plf	350-plf 284-plf		
P1-3	1 SIDE	3" oc	Зx	(2)2x	2x	3" oc	A35 @ 14" oc or LTP4 @ 14" oc	% "Ø @ 36" oc	MASAP @ 28" oc	450-plf 366-plf	450-plf 366-plf		
P1-2	1 SIDE	2" oc	3x	(2)2x	2x	2" oc	A35 @ 7½" oc or LTP4 @ 7½" oc	% "Ø @ 20" oc	MASAP @ 18" oc	590-plf 478-plf	820-plf 669-plf		
P2-4	2 SIDES	4"oc	3x	(2)2x	3x	(2) Rows, 4" oc	A35 @ 18" oc <u>and</u> LTP4 @ 18" oc	% "Ø @ 28" oc	MASAP @ 15" oc	700-plf 568-plf	700-plf 568-plf		
P2-3	2 SIDES	3" oc	3x	(2)2x	3x	(2) Rows, 3" oc	A35 @ 14" oc and LTP4 @ 14" oc	% "Ø @ 22" oc	MASAP @ 11" oc	900-plf 733-plf	900-plf 733-plf		
P2-2	2 SIDES	2" oc	Зx	(2)2x	Зх	(2) Rows, 2" oc	A35 @ 8" oc and I TP4 @ 8" oc	% "Ø @ 12" oc	MASAP @ 7" oc	1180-plf 957-plf	1640-plf 1338-plf		

SHEAR WALL SCHEDULE NOTES (SECTION 4.3.7.1.1) X^ar OSB of Y^a/^a/^b PLYWOOD SHEATHING OR SIDING EXCEPT GROUP 5 SPECIES. MINIMUM PANEL SPAN RATING OF (24/0). PANELS SHALL NOT BE LESS THAN 4'x^a, EXCEPT AT BOUNDARIES AND CHANGES IN FRAMING. ALL EDGES OF ALL PANELS SHALL BE SUPPORTED BY AND FASTENED TO FRAMING MEMBERS OR BLOCKING.

② (SECTION 4.3.7.1.2. & SECTION 4.3.7.1.3) PAREL EDGE NALING APPLIES TO ALL SHEATHING PANEL EDGES. NAIL SHEATHING TO INTERMEDIATE FRAMING MEMBERS WITH SHEATHING NAILS @ 12°oc. MAXIMUM STUD SPACING SHALL BE 16°oc. SHEATHING NAILS SHALL BE 0.131°Ø x 2½". PLYWOOD EDGE NAILING SHALL BE STAGGERED. NAILS SHALL BE LOCATED AT LEAST ¾" FROM THE PANEL EDGES.

(SECTION 4.3.7.1.4) THE MINIMUM NOMINAL WIDTH OF THE NAILED FACE OF FRAMING AND BLOCKING AT ADJOINING PANEL EDGES SHALL BE AS INDICATED IN THE SCHEDULE.

④ FACE NAILING APPLIES TO CONDITIONS WHERE FRAMING NAILS CAN BE STRAIGHT DRIVEN THRU FIRST MEMBER AND PENETRATE MAIN MEMBER MINIMUM OF 1½". FRAMING NAILS SHALL BE 0.131*Ø x 3½". 0.131*Ø x 3" NAILS MAY BE USED WHEN STITCHING TOGETHER (2)2x MEMBERS WITH NO SPACERS.

⑤ AT ADJOINING PANEL EDGES WHERE SHEATHING CANNOT LAP ON SINGLE MEMBER AND FACE NAILING CANNOT BE ACCOMPLISHED, FRAMING CLIPS SHALL BE USED TO FASTEN BUILT-UP MEMBERS. USE 0.131'Ø × ⅔' NAILS AT LTP4 CLIP WHEN INSTALLED OVER ⅔' SHEATHING.

(6) (SECTION 4.3.6.4.3) ANCHOR BOLTS EMBEDMENT SHALL BE 7", U.O.N. ALL ANCHORS SHALL HAVE 3" x 3" x 0.229" PLATE WASHERS. PLATE WASHERS SHALL EXTEND TO WITHIN X" OF THE EDGE OF THE BOTTOM PLATE ON THE SDE WITH SHEATHING. IF SHEATHING IS ON BOTH SIDES OF THE WALL, STAGGER THE ANCHOR BOLTS, AS REQUIRED, SO THAT HALF OF THE PLATE WASHERS ARE WITHIN X" OF THE EDGE OF THE BOTTOM PLATE ON EACH SIDE. HOLE IN PLATE WASHERS MAY BE DIAGONALLY SLOTTED.

Miscellaneous

Stud Wall Design

Based on 2018 NDS Combined axial and bending formula:

$[f_c/F_c']^2 + f_b/F_b'[1-(f_c/F_{cE})] < 1 \qquad \text{in which: } F_{cE} = 0.822(\text{Emin'})/(\ell_e/d)^2$											
Wall: Exterior Walls Wa	all Height:		9	ft							
De	sired Stud Spacing:		24	in oc							
No Fire Rating	sign Axial Dead Load:		683	plf							
_{2x6} \blacktriangleright De	sign Axial Live Load:		960	plf							
SPF Stud 🖵 De	sign Axial Snow Load:		538	plf							
De	sign Lateral Pressure (0.	6W):	15	psf							
De	flection Criteria:	L/	240								
STUD CHECK	ℓ _e /d < 50	OK									
D+0.6W (C _D = 1.60)											
$[f_{c}/F_{c}']^{2} + f_{b}/F_{b}'[1-(f_{c}/F_{cE})] =$	0.53 < 1	OK									
$f_{c}/F_{cE2} + (f_{b}/F_{bE})^{2} =$	0.00 < 1	OK									
D+0.75L+0.75(0.6W)+0.75S ($C_{D} = 1.60$)											
$[f_c/F_c']^2 + f_b/F_b'[1-(f_c/F_{cE})] =$	0.92 < 1	OK									
$f_{c}/F_{cE2} + (f_{b}/F_{bE})^{2} =$	0.00 < 1	OK									
D+0.75L+0.75S ($C_D = 1.15$)											
$f_c/F_c' =$	0.72 < 1	OK									
$D+L (C_D = 1.0)$											
$f_c/F_c' =$	0.71 < 1	OK									
Deflection (No Increase for Load Duratio	on):										
Defl: L/ $240 = 0.45$	0.18 < 0.45	OK									

SPF Stud 2x6 @ 24 oc

OK

PLATE CRUSHING CHECK									
Checks Crushing for Stud Spacing ²									
No Stress Increase for Load Duration									
Hem Fir Plates:	$f_c/F_{c\perp}' =$	0.87	<	1	OK				
Douglas Fir Plates:	$f_c/F_{c\perp}' =$	0.56	<	1	OK				

¹ Plate must also be checked for bending.

² Check on crushing only applies to stud spacing. Joists above must also be checked for crushing effect on plate.

Also, no stress increase is allowed due to load duration.

Date: 1/27/2021

Page: M1.1

Stud Wall Design

Based on 2018 NDS Combined axial and bending formula:

$[f_c/F_c]^2 + f_b/F_b'[1-(f_c/F_{cE})] < 1$ in which: $F_{cE} = 0.822(\text{Emin'})/(\ell_e/d)^2$											
						I					
Wall: Exterior Walls W	/all Height:			19.25	ft						
D	esired Stud	l Sp	acing:		16	in oc					
No Fire Rating 🗾 🗸 D	esign Axial	Dea	ad Load:		323	plf					
(2)2x6 v D	esign Axial	Live	e Load:		0	plf					
SPF Stud 🖵 D	esign Axial	Sno	ow Load:		538	plf					
D	esign Later	al P	Pressure (0.6	6W):	15	psf					
D	eflection C	iteri	ia:	L/	180						
STUD CHECK	ℓ _e /d	<	50	OK							
D+0.6W (C _D = 1.60)											
$[f_c/F_c]^2 + f_b/F_b'[1-(f_c/F_{cE})] =$	0.70	<	1	OK							
$f_{c}/F_{cE2} + (f_{b}/F_{bE})^{2} =$	0.00	<	1	OK							
$D+0.75L+0.75(0.6W)+0.75S$ ($C_D = 1.60$))										
$[f_c/F_c']^2 + f_b/F_b'[1-(f_c/F_{cE})] =$	0.71	<	1	OK							
$f_c/F_{cE2} + (f_b/F_{bE})^2 =$	0.00	<	1	OK							
D+0.75L+0.75S (C _D = 1.15)											
f _c /F _c ' =	0.30	<	1	OK							
D+L (C _D = 1.0)											
f _c /F _c ' =	0.14	<	1	OK							
Deflection (No Increase for Load Durati	ion):										
Defl: L/ 180 = 1.28	1.24	<	1.28	OK							

SPF Stud (2)2xt @ 16 oc

OK

PLATE CRUSHING CHECK'									
Checks Crushing for Stud Spacing [∠]									
No Stress Increase for Load Duration									
Hem Fir Plates:	$f_c/F_{c\perp}' =$	0.13 < 1	OK						
Douglas Fir Plates:	$f_c/F_{c\perp}' =$	0.08 < 1	OK						

¹ Plate must also be checked for bending.

² Check on crushing only applies to stud spacing. Joists above must also be checked for crushing effect on plate.

Also, no stress increase is allowed due to load duration.

Date: 1/27/2021

Page: <u>M1.2</u>

Stud Wall Design

Based on 2018 NDS Combined axial and bending formula:

$[f_c/F_c]^2 + f_b/F_b'[1-(f_c/F_{cE})] < 1$ in which: $F_{cE} = 0.822(\text{Emin'})/(\ell_e/d)^2$							
Wall: Interior Walls	Wall Heigh	t:			9	ft	
	Desired St	ud Sp	acing:		24	in oc	
No Fire Rating 🛛 🗸 🔻	Design Ax	al De	ad Load:		203	plf	
2x4 🗸	Design Ax	al Liv	e Load:		540	plf	
SPF Stud	Design Ax	al Sn	ow Load:		0	plf	
	Design Lat	eral F	Pressure (0.	6W):	5	psf	
	Deflection	Criter	ia:	L/	180		
				8			
STUD CHECK	l _e /c	<	50	OK			
$D+0.6W$ ($C_D = 1.60$)							
$[t_c/F_c']^2 + t_b/F_b'[1-(t_c/F_{cE})] =$	= 0.4	<	1	OK			
$T_{c}/F_{cE2} + (T_{b}/F_{bE})^{-1}$	= 0.00) <	1	OK			
$D+0.75L+0.75(0.6W)+0.75S$ ($C_D = 1$.60)						
$[f_c/F_c']^2 + f_b/F_b'[1-(f_c/F_{cE})] =$	= 0.99) <	1	OK			
$f_c/F_{cE2} + (f_b/F_{bE})^2 =$	= 0.00) <	1	OK			
D+0.75L+0.75S (C _D = 1.15)							
f _c /F _c ' =	= 0.69) <	1	OK			
D+L (C _D = 1.0)							
f _c /F _c ' =	= 0.86	s <	1	ОК			
Deflection (No Increase for Load Du	ration):						
Defl: L/ 180 = 0.60	0.23	3 <	0.60	ОК			
	SPF Stud	1 2x4	@ 24 oc	OK			
PLATE CRUSHING CHECK							

PLATE CRUSHING CHECK						
Checks Crushing for Stud Spacing [∠]						
No Stress Increase for L	oad Duration					
Hem Fir Plates:	$f_c/F_{c\perp}' =$	0.46 < 1	OK			
Douglas Fir Plates:	$f_c/F_{c\perp}' =$	0.30 < 1	OK			

¹ Plate must also be checked for bending.

² Check on crushing only applies to stud spacing. Joists above must also be checked for crushing effect on plate.

Also, no stress increase is allowed due to load duration.

Date: 1/27/2021

Page: <u>M1.3</u>

Stud Wall Design

Based on 2018 NDS Combined axial and bending formula:

$[f_c/F_c]^2 + f_b/F_b'[1-(f_c/F_b)]$	_{cE})] < 1	in w	hich: F _{cE} =	0.822(Emi	n')/((l _e /d) ²	
Wall: Interior Walls	Wall Height:				9	ft
	Desired Stu	d Sp	acing:		16	in oc
No Fire Rating 🛛 🗸 🔻	Design Axia	l De	ad Load:		338	plf
2x4 🗸	Design Axia	l Liv	e Load:		900	plf
SPE Stud	Design Axia	l Sno	ow Load:		0	plf
Si Sta	Design Late	ral F	Pressure (0.0	6W):	5	psf
	Deflection C	riter	ia:	L/	180	
STUD CHECK	ℓ _e /d	<	50	OK		
D+0.6W ($C_{\rm D}$ = 1.60)						
$[f_{c}/F_{c}]^{2} + f_{b}/F_{b}'[1-(f_{c}/F_{cE})] =$	0.31	<	1	OK		
$t_{c}/F_{cE2} + (t_{b}/F_{bE})^{2} =$	0.00	<	1	OK		
$D+0.75L+0.75(0.6W)+0.75S(C_{D} = 1)$.60)					
$[t_c/F_c']^2 + t_b/F_b'[1-(t_c/F_{cE})] =$	0.99	<	1	OK		
$I_{c}/F_{cE2} + (I_{b}/F_{bE}) =$	0.00	<	1	OK		
$D+0.75L+0.75S (C_D = 1.15)$ f./F.' =	0.76	~	1	OK		
$D+1$ ($C_{2} = 1.0$)	0.70		I	ÖK		
f./F.' =	0.95	<	1	ОК		
Deflection (No Increase for Load Dur	ration):		·	ÖN		
Defl: L/ 180 = 0.60	0.15	<	0.60	ОК		
	-					
	SPF Stud	2x4	@ 16 oc	OK		
					•	

PLATE CRUSHING CHECK'					
Checks Crushing for Stud Spacing [∠]					
No Stress Increase for L	oad Duration				
Hem Fir Plates:	$f_c/F_{c\perp}' =$	0.51	< 1	OK	
Douglas Fir Plates:	$f_c/F_{c\perp}' =$	0.33	< 1	OK	

¹ Plate must also be checked for bending.

² Check on crushing only applies to stud spacing. Joists above must also be checked for crushing effect on plate.

Also, no stress increase is allowed due to load duration.

Date: 1/27/2021

Page: <u>M1.4</u>

2018 NDS

3.7-SOLID COLUMNS and 15.3-BUILT-UP COLUMNS

c = 0.8 $K_f = 1.0$

$$=\frac{\frac{0.022}{l_e}l_e}{\left(\frac{l_e}{d}\right)^2}$$

	<u>STUD</u>	HF Plate Crushing	DF Plate Crushing
(1) 2x6	4904	3341	5156
(2) 2x6	9807	6683	10313
(3) 2x6	14711	10024	15469
(4) 2x6	19614	13365	20625
(5) 2x6	24518	16706	25781

Date: 1/27/2021

2018 NDS

3.7-SOLID COLUMNS and 15.3-BUILT-UP COLUMNS

$$c = 0.8$$
$$K_f = 1.0$$

$$=\frac{0.022 L \text{ mm}}{\left(\frac{l_e}{d}\right)^2}$$

	STUD	HF Plate Crushing	DF Plate Crushing
(1) 2x4	1746	2126	3281
(2) 2x4	3492	4253	6563
(3) 2x4	5237	6379	9844
(4) 2x4	6983	8505	13125
(5) 2x4	8729	10631	16406

Date: 1/27/2021

Date: 3/19/2018

Max Load (Factored)

19011 Wood-Sno Road NE, Suite 100 Woodinville, WA 98072-4436 Phone: 425-814-8448 Fax: 425-821-2120

Project: Footing:	Typical Footing 18" x 18" x 8" thick				/		× 4.
	Footing $B = 1$ t = 8	.50 ft			and the second sec		months to
	Reinforcement $R = (2$	2) #4 🔻	-			The second second	
	$A_{s1} = 0$.40 in ²	-		1	solated footing	
	d = 4	.25 in	Cover: 3	3 in			+
	Column $C_1 = 3$.50 in	C 2 = 3	3.50 in	+		-
	Materials $f'_c = 2500 \text{ psi}$ N	Iormalweight	-	$\lambda = 1.00$		- E	
	f _y = 40000 psi _L	Incoated	▼ 4	$b_e = 1.00$	T	<u> 23</u>	
	Net Footing Weight				4		R
	$P_{FTG} = 0.06 \text{ k}$						
	Soli Pressure: $P_{ASD} = q_a B^2 - P_{FTG} =$				<u> </u>	норт х ——В———	4
	One-way shear: $\phi = 0$.75					
	$V_c = 2\lambda \sqrt{f_c' B d} = 7.65 \text{ k}$ $V_u \le \emptyset V_c \qquad \emptyset V_c = 5.74 \text{ k}$			(Ň		
	$V_u = q_u B\left(\frac{B - C_2}{2} - d\right) \to q_u = \frac{1}{B\left(\frac{B}{2}\right)}$	$\frac{\phi V_c}{-C_2-d}$	$V_u =$	$q_u B\left(\frac{B-C_1}{2}\right)$	$(-d) \rightarrow q_u =$	$=\frac{\emptyset V_c}{B\left(\frac{B-C_1}{2}\right)}$	-d
	$q_u = 15300 \text{ psf}$	2 ") or	15300 psf	P_{μ} =	$= q_{\mu}B^2 =$	34425 #	~)
	Two-way shear: $\phi = 0$.75	·		- 00		
	[22.6.5.2(a)] $v_c = 4\lambda \sqrt{f_c'} =$		200 psi	\Diamond			
	[22.6.5.2(b)] $v_c = \left(2 + \frac{4}{\beta}\right) \lambda \sqrt{f_c'}$	=	300 psi		$\beta = 1$ $\alpha_x = 4$.00 Ю	
	$[22.6.5.2(c)] v_c = \left(2 + \frac{\alpha_x d}{b_0}\right) \lambda \sqrt{f}$	$\overline{c}' =$	374 psi		$b_0 = 2$	2(C ₁ +d)+2(C 31	₂ +d)
	$V_u \le \phi V_c \qquad \phi V_c = \phi v_c b_0$	d =	19.76 k				
	$V_{\mu} = q_{\mu} [B^2 - (C_1 + d)(C_2 + d)]$	$] \rightarrow q_{\mu} = \frac{1}{r}$	Ø1		ī		
	$a_{\rm eff} = 10782 {\rm psf}$	- "" [$B^2 - (C_1 +$	$d(C_2 + d) = \frac{p}{p}$	$[-a R^2 -$	24260 #	
	Moment: $\phi = 0$.90		¹ u	$= q_u D =$	21200 //	
	$M_n = A_s f_y \left(d - \frac{a}{2} \right) =$	5.4 k-ft					
	$a = A_s f_y / (0.85 f_c B) =$	0.42 in					
	$M_u \le \emptyset M_n \qquad \qquad \emptyset M_n =$	4.8 k-ft			_		
	$q_{u}B\left(\frac{B-C_{2}}{2}\right)^{2}$	2 <i>₼</i> M		$q_{\mu}B\left(\frac{B-C_{\mu}}{2}\right)$	$\left(\frac{1}{2}\right)^2$	2 <i>M</i> M	
	$M_u = \frac{1}{2} \xrightarrow{(2)} q_u = \frac{1}{p(p)}$	$\frac{1}{\left(\frac{1}{2}\right) \left(\frac{1}{2}\right)^{2}}$	$M_u =$	$=\frac{10}{2}$	$ \rightarrow q_u = {r}$	$\frac{2\psi m_n}{(p-c)/2}$	$\overline{)^2}$
	$q_u = 17712 \text{psf}^{(B)}$	$-c_2/2)$ or	17712 psf	$P_u =$	$= q_u B^2 = B^B$	$(B - C_1)/2$ 39853 #)
	Development of Reinforcement:						
	$l_d = \left(\frac{3}{40} \frac{f_y}{\lambda \sqrt{f_c'}} \frac{\psi_t \psi_e \psi_s}{\left(\frac{c_b + K_{tr}}{d_y}\right)}\right) d_b =$	4 in Adjusted	4 in a	available (ЭК		
	Soil Bearing Pressure	1500 psf	2000 psf	2500 psf	3000 psf	3500 psf	4000 psf
	Max Load (lbs), Soil	3315	4440	5565	6690	7815	8940
	Max Load (lbs), One-Way Shear	21516	21516	21516	21516	21516	21516
	Max Load (Ibs), 1 wo-way Snear Max Load (Ibs). Moment	24908	24908	24908	24908	24908	24908
	Max Load (ASD)	3315	4440	5565	6690	7815	8940

5304

7104

8904

10704

Date: 1/23/2023

14304

12504

Draiget	Typical Facting						
Footing:	24" x 24" x 8" thick						
	Footing $B = 2$.00 ft			K	Ψ	J. It
	t = 8	in	_		MARCO.	and the second s	Party.
	Reinforcement $R = (2)$	2) #4 💌	_			The second second	
	$A_{s1} = 0$.40 in ²				Isolated footing	6
	d = 4	.25 in	Cover:	3 IN 2 EO in	adaa		F
	Materials $f' = 2500 \text{ psi}$	lormalwoight	$\mathbf{U}_2 = \mathbf{V}_2$	3 - 100			
	f = 40000 psi	Incoated		h = 1.00	+		- С ₂ в
	Net Footing Weight		Y	Pe 1.00			R
	$P_{FTG} = 0.11 \text{ k}$						
	Soil Pressure:					+-c,+ CR	
	$P_{ASD} = q_a B^2 - P_{FTG} =$,	0	
	One-way shear: $\phi = 0$.75					
	$V_c = 2\lambda \sqrt{f_c'}Bd = 10.20 \text{ k}$						
	$V_u \le \emptyset V_c \emptyset V_c = 7.65 \text{ K}$	ØV.		$(B - C_1)$		ØV.	
	$V_u = q_u B \left(\frac{B - S_2}{2} - d \right) \rightarrow q_u = \frac{B}{B (B)}$	$\frac{c_c}{-C_2}$	$V_u =$	$q_u B \left(\frac{1}{2} \right)$	$\left(\frac{1}{d}-d\right) \rightarrow q_u$	$=\frac{B}{B}\left(\frac{B-C_{1}}{C_{1}}\right)$	-d
	$q_{11} = 7650 \text{ psf}$	$\frac{2}{\alpha} - u$	7650 psf	P.,	$= a_{}B^2 =$	^D (2 30600 #	uj
	Two-way shear: $\phi = 0$.75	p	- u	4 <i>u</i> -		
	[22.6.5.2(a)] $v_c = 4\lambda \sqrt{f_c'} =$		200 psi	\Diamond			
	[22.6.5.2(b)] $v_c = \left(2 + \frac{4}{c}\right) \lambda \sqrt{f_c'}$	=	300 psi		$\beta = 1$	1.00	
	(b)				$\alpha_x = 2$	10 10 +4)+2(C	
	[22.6.5.2(c)] $v_c = \left(2 + \frac{\alpha_{\chi} d}{b_0}\right) \lambda \sqrt{f}$	$\frac{c'}{c} =$	374 psi		$D_0 = 2$	2(01+0)+2(0 31	2 ~ u)
	$V_u \le \phi V_c \qquad \phi V_c = \phi v_c b_0$	d =	19.76 k				
	$V_{11} = q_{11}[B^2 - (C_1 + d)(C_2 + d)]$	$] \rightarrow q_{\mu} = \frac{1}{2}$	Ø	V _c	-		
	$a_{11} = 5516 \mathrm{psf}$	- "" [$B^2 - (C_1 +$	$d(C_2 + d)$	$= a B^2 =$	22063 #	
	Moment: $\phi = 0$.90		¹ u	$-q_{u}D$ –	22000 //	
	$M_n = A_s f_y \left(d - \frac{a}{2} \right) =$	5.5 k-ft					
	$a = A_s f_y / (0.85 f_c B) =$	0.31 in					
	$M_u \le \emptyset M_n \qquad \emptyset M_n =$	4.9 k-ft			7		
	$q_u B \left(\frac{B-C_2}{2}\right)^2$	2ØM _n		$q_u B\left(\frac{B-C}{2}\right)$	$\left(\frac{r}{2}\right)^2$	$2\phi M_n$	
	$M_u = \frac{1}{2} \rightarrow q_u = \frac{1}{B(B)}$	$(-C_2)/2)^2$	$M_u =$	=2	$\xrightarrow{\gamma} \rightarrow q_u = -$	$R = \frac{1}{(B - C_4)/2}$	$\left(\frac{1}{2}\right)^2$
	$q_u = 6732 \mathrm{psf}$	or	6732 psf	P_u	$= q_u B^2 = 1$	26929#	•)
	Development of Reinforcement: $\begin{pmatrix} 3 & f & y \\ y \\$						
	$l_d = \left(\frac{3}{40} \frac{f_y}{\sqrt{f'}} \frac{\varphi_t \varphi_e \varphi_s}{(c_b + K_{tr})}\right) d_b =$	7 in	7 in a	available	ОК		
	$\left(\frac{1}{\lambda_{N}} \int_{C} \left(\frac{1}{d_{b}}\right)\right)$	Adjusted	1				
	Soil Bearing Pressure	1500 psf	2000 psf	2500 psf	3000 psf	3500 psf	4000 psf
	Max Load (Ibs), Soli Max Load (Ibs), One-Way Shear	19125	19125	9893 19125	19125	19125	19125
	Max Load (lbs), Two-Way Shear	13789	13789	13789	13789	13789	13789
	Max Load (Ibs), Moment	16830	16830	16830	16830	16830	16830
	Max Load (Factored)	9429	12629	15829	19029	20337	20337

Date: 1/23/2023

Page: M2.3

Project:
 Typical Footing:
 30' x 30' x 80' kick

 Footing:
 30' x 30' x 80' kick

 Footing:

$$a'' x 30' x 80' kick$$

 Footing:
 $a'' x 30' x 80' kick$

 Footing:
 $a'' x 30' x 80' kick$

 Reinforcement
 $R = (3) \frac{m}{4}$

 A_{x1} = 0.60 in*
 $a' = x 50 in$

 Column
 $C_1 = 3.50 in$
 $C_2 = 3.50 in$

 Naterials:
 $f_* = 2500 psi$
 $v = x = 3.50 in$

 Price =
 0.17 k
 $b'' = 0 = 0.75$

 V_x = $0 = 0.72 k$
 $b'' = 0 = 0.75$
 $v_x = q_u B \left(\frac{B - C_1}{2} - d \right) \rightarrow q_u = \frac{\theta''_x}{B \left(\frac{B - C_2}{2} - d \right)}$
 $q_u = 5000 psi$
 $q_u = 5000 psi$
 $v_u = q_u B \left(\frac{B - C_1}{2} - d \right) \rightarrow q_u = \frac{\theta''_x}{B \left(\frac{B - C_2}{2} - d \right)}$
 $q_u = 5000 psi$
 $g = 0.75$
 $v_u = q_u B \left(\frac{B - C_1}{2} - d \right) \rightarrow q_u = \frac{\theta''_x}{B \left(\frac{B - C_1}{2} - d \right)}$
 $q_u = 5000 psi$
 $g = 0.75$
 $v_u = q_u B \left(\frac{B - C_1}{2} - d \right) \rightarrow q_u = \frac{\theta''_x}{B \left(\frac{B - C_1}{2} - d \right)}$
 $q_u = 5000 psi$
 $g = 0.75$
 $v_u = q_u B \left(\frac{B - C_1}{2} - d \right) \rightarrow q_u = \frac{\theta''_x}{B \left(\frac{B - C_1}{2} - d \right)}$
 $q_u = 0 x B \left(\frac{B - C_1}{2} - d \right) \rightarrow q_u = \frac{\theta''_x}{B \left(\frac{B - C_1}{2} - d \right)}$
 $q_u = \frac{\theta_u B \left(\frac{B - C_1}{2} - d \right)}$
 $q_u = 0 x B \left(\frac{B - C_1}{2} - d \right) \sqrt{f_u^{-1}} = 37$

Date: <u>1/23/2023</u>

Date: 1/23/2023

Page: M2.5

Date: 1/23/2023

Page: M2.6

Date: 1/23/2023